ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Ising Model: Reconstruction of Evolutionary Trees

161   0   0.0 ( 0 )
 نشر من قبل Paulo Murilo Castro de Oliveira
 تاريخ النشر 2013
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An evolutionary tree is a cascade of bifurcations starting from a single common root, generating a growing set of daughter species as time goes by. Species here is a general denomination for biological species, spoken languages or any other entity evolving through heredity. From the N currently alive species within a clade, distances are measured through pairwise comparisons made by geneticists, linguists, etc. The larger is such a distance for a pair of species, the older is their last common ancestor. The aim is to reconstruct the past unknown bifurcations, i.e. the whole clade, from the knowledge of the N(N-1)/2 quoted distances taken for granted. A mechanical method is presented, and its applicability discussed.



قيم البحث

اقرأ أيضاً

Mathematical modelling and numerical simulations of interaction populations are crucial topics in systems biology. The interactions of ecological models may occur among individuals of the same species or individuals of different species. Describing t he dynamics of such models occasionally requires some techniques of model analysis. Choosing appropriate techniques of model analysis is often a difficult task. We define a prey (mouse) and predator (cat) model. The system is modelled by a pair of non-linear ordinary differential equations using mass action law, under constant rates. A proper scaling is suggested to minimize the number of parameters. More interestingly, we propose a homotopy technique with n expanding parame- ters for finding some analytical approximate solutions. Furthermore, using the local sensitivity method is another important step forward in this study because it helps to identify critical model parameters. Numerical simulations are provided using Matlab for different parameters and initial conditions.
161 - Daniel L. Rabosky 2014
A number of methods have been developed to infer differential rates of species diversification through time and among clades using time-calibrated phylogenetic trees. However, we lack a general framework that can delineate and quantify heterogeneous mixtures of dynamic processes within single phylogenies. I developed a method that can identify arbitrary numbers of time-varying diversification processes on phylogenies without specifying their locations in advance. The method uses reversible-jump Markov Chain Monte Carlo to move between model subspaces that vary in the number of distinct diversification regimes. The model assumes that changes in evolutionary regimes occur across the branches of phylogenetic trees under a compound Poisson process and explicitly accounts for rate variation through time and among lineages. Using simulated datasets, I demonstrate that the method can be used to quantify complex mixtures of time-dependent, diversity-dependent, and constant-rate diversification processes. I compared the performance of the method to the MEDUSA model of rate variation among lineages. As an empirical example, I analyzed the history of speciation and extinction during the radiation of modern whales. The method described here will greatly facilitate the exploration of macroevolutionary dynamics across large phylogenetic trees, which may have been shaped by heterogeneous mixtures of distinct evolutionary processes.
By equipping a previously reported dynamic causal model of COVID-19 with an isolation state, we modelled the effects of self-isolation consequent on tracking and tracing. Specifically, we included a quarantine or isolation state occupied by people wh o believe they might be infected but are asymptomatic, and only leave if they test negative. We recovered maximum posteriori estimates of the model parameters using time series of new cases, daily deaths, and tests for the UK. These parameters were used to simulate the trajectory of the outbreak in the UK over an 18-month period. Several clear-cut conclusions emerged from these simulations. For example, under plausible (graded) relaxations of social distancing, a rebound of infections within weeks is unlikely. The emergence of a later second wave depends almost exclusively on the rate at which we lose immunity, inherited from the first wave. There exists no testing strategy that can attenuate mortality rates, other than by deferring or delaying a second wave. A sufficiently powerful tracking and tracing policy--implemented at the time of writing (10th May 2020)--will defer any second wave beyond a time horizon of 18 months. Crucially, this deferment is within current testing capabilities (requiring an efficacy of tracing and tracking of about 20% of asymptomatic infected cases, with less than 50,000 tests per day). These conclusions are based upon a dynamic causal model for which we provide some construct and face validation, using a comparative analysis of the United Kingdom and Germany, supplemented with recent serological studies.
In this paper, decision theory was used to derive Bayes and minimax decision rules to estimate allelic frequencies and to explore their admissibility. Decision rules with uniformly smallest risk usually do not exist and one approach to solve this pro blem is to use the Bayes principle and the minimax principle to find decision rules satisfying some general optimality criterion based on their risk functions. Two cases were considered, the simpler case of biallelic loci and the more complex case of multiallelic loci. For each locus, the sampling model was a multinomial distribution and the prior was a Beta (biallelic case) or a Dirichlet (multiallelic case) distribution. Three loss functions were considered: squared error loss (SEL), Kulback-Leibler loss (KLL) and quadratic error loss (QEL). Bayes estimators were derived under these three loss functions and were subsequently used to find minimax estimators using results from decision theory. The Bayes estimators obtained from SEL and KLL turned out to be the same. Under certain conditions, the Bayes estimator derived from QEL led to an admissible minimax estimator (which was also equal to the maximum likelihood estimator). The SEL also allowed finding admissible minimax estimators. Some estimators had uniformly smaller variance than the MLE and under suitable conditions the remaining estimators also satisfied this property. In addition to their statistical properties, the estimators derived here allow variation in allelic frequencies, which is closer to the reality of finite populations exposed to evolutionary forces.
The availability of a large number of assembled genomes opens the way to study the evolution of syntenic character within a phylogenetic context. The DeCo algorithm, recently introduced by B{e}rard et al. allows the computation of parsimonious evolut ionary scenarios for gene adjacencies, from pairs of reconciled gene trees. Following the approach pioneered by Sturmfels and Pachter, we describe how to modify the DeCo dynamic programming algorithm to identify classes of cost schemes that generates similar parsimonious evolutionary scenarios for gene adjacencies, as well as the robustness to changes to the cost scheme of evolutionary events of the presence or absence of specific ancestral gene adjacencies. We apply our method to six thousands mammalian gene families, and show that computing the robustness to changes to cost schemes provides new and interesting insights on the evolution of gene adjacencies and the DeCo model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا