ﻻ يوجد ملخص باللغة العربية
We propose general principles for semantic networks allowing them to be implemented as dynamical neural networks. Major features of our scheme include: (a) the interpretation that each node in a network stands for a bound integration of the meanings of all nodes and external events the node links with; (b) the systematic use of nodes that stand for categories or types, with separate nodes for instances of these types; (c) an implementation of relationships that does not use intrinsically typed links between nodes.
A popular theory of perceptual processing holds that the brain learns both a generative model of the world and a paired recognition model using variational Bayesian inference. Most hypotheses of how the brain might learn these models assume that neur
Blind source separation, i.e. extraction of independent sources from a mixture, is an important problem for both artificial and natural signal processing. Here, we address a special case of this problem when sources (but not the mixing matrix) are kn
Task-based modeling with recurrent neural networks (RNNs) has emerged as a popular way to infer the computational function of different brain regions. These models are quantitatively assessed by comparing the low-dimensional neural representations of
Feedforward networks (FFN) are ubiquitous structures in neural systems and have been studied to understand mechanisms of reliable signal and information transmission. In many FFNs, neurons in one layer have intrinsic properties that are distinct from
A companion paper introduces a nonlinear network with Hebbian excitatory (E) neurons that are reciprocally coupled with anti-Hebbian inhibitory (I) neurons and also receive Hebbian feedforward excitation from sensory (S) afferents. The present paper