ترغب بنشر مسار تعليمي؟ اضغط هنا

HST Spectral Mapping of L/T Transition Brown Dwarfs Reveals Cloud Thickness Variations

118   0   0.0 ( 0 )
 نشر من قبل Daniel Apai Dr
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Most directly imaged giant exoplanets are fainter than brown dwarfs with similar spectra. To explain their relative underluminosity unusually cloudy atmospheres have been proposed. However, with multiple parameters varying between any two objects, it remained difficult to observationally test this idea. We present a new method, sensitive time-resolved Hubble Space Telescope near-infrared spectroscopy, to study two rotating L/T transition brown dwarfs (2M2139 and SIMP0136). The observations provide spatially and spectrally resolved mapping of the cloud decks of the brown dwarfs. The data allow the study of cloud structure variations while other parameters are unchanged. We find that both brown dwarfs display variations of identical nature: J- and H-band brightness variations with minimal color and spectral changes. Our light curve models show that even the simplest surface brightness distributions require at least three elliptical spots. We show that for each source the spectral changes can be reproduced with a linear combination of only two different spectra, i.e. the entire surface is covered by two distinct types of regions. Modeling the color changes and spectral variations together reveal patchy cloud covers consisting of a spatially heterogenous mix of low-brightness, low-temperature thick clouds and brighter, thin and warm clouds. We show that the same thick cloud patches seen in our varying brown dwarf targets, if extended to the entire photosphere, predict near-infrared colors/magnitudes matching the range occupied by the directly imaged exoplanets that are cooler and less luminous than brown dwarfs with similar spectral types. This supports the models in which thick clouds are responsible for the near infrared properties of these underluminous exoplanets.



قيم البحث

اقرأ أيضاً

We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rot ation-modulated flux variations between 1.1 $mu$m and 1.7 $mu$m. We find that the water absorption bands of the two L5 dwarfs at 1.15 $mu$m and 1.4 $mu$m vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 $mu$m displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.
Time-resolved observations of brown dwarfs rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 near-infrared G141 taken in six consecutive orbits observations of HN Peg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the $1.1-1.7mu$m broadband light curve has the amplitude of $1.206pm0.025%$ and period of $15.4pm0.5$ hr. The modulation amplitude has no detectable wavelength dependence except in the 1.4 $mu$m water absorption band, indicating that the characteristic condensate particle sizes are large ($>1mu$m). We detect significantly ($4.4sigma$) lower modulation amplitude in the 1.4$mu$m water absorption band, and find that HN Peg Bs spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.
We present a new suite of atmosphere models with flexible cloud parameters to investigate the effects of clouds on brown dwarfs across the L/T transition. We fit these models to a sample of 13 objects with well-known masses, distances, and spectral t ypes spanning L3-T5. Our modelling is guided by spatially-resolved photometry from the Hubble Space Telescope and the W. M. Keck Telescopes covering visible to near-infrared wavelengths. We find that, with appropriate cloud parameters, the data can be fit well by atmospheric models with temperature and surface gravity in agreement with the predictions of evolutionary models. We see a clear trend in the cloud parameters with spectral type, with earlier-type objects exhibiting higher-altitude clouds with smaller grains (0.25-0.50 micron) and later-type objects being better fit with deeper clouds and larger grains ($geq$1 micron). Our results confirm previous work that suggests L dwarfs are dominated by submicron particles, whereas T dwarfs have larger particle sizes.
The rotational spectral modulation (spectro-photometric variability) of brown dwarfs is usually interpreted as a sign of the presence of inhomogeneous cloud covers in the atmosphere. This paper aims at exploring the role of temperature fluctuations i n these spectral modulations. These fluctuations could naturally arise in a convective atmosphere impacted by diabatic processes such as complex chemistry, i.e. the recently proposed mechanism to explain the L/T transition: CO/CH4 radiative convection. We use the 1D radiative/convective code ATMO with ad-hoc modifications of the temperature gradient to model the rotational spectral modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22. Modeling the spectral bright-to-faint ratio of the modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22 shows that most spectral characteristics can be reproduced by temperature variations alone. Furthermore, the approximately anti-correlated variability between different wavelengths can be easily interpreted as a change in the temperature gradient in the atmosphere which is the consequence we expect from CO/CH4 radiative convection to explain the L/T transition. The deviation from an exact anti-correlation could then be interpreted as a phase shift similar to the hot-spot shift a different bandpasses in the atmosphere of hot Jupiters. Our results suggest that the rotational spectral modulation from cloud-opacity and temperature variations are degenerate. The detection of direct cloud spectral signatures, e.g. the silicate absorption feature at 10 um, would help to confirm the presence of clouds and their contribution to spectral modulations. Future studies looking at the differences in the spectral modulation of objects with and without the silicate absorption feature may give us some insight on how to distinguish cloud-opacity fluctuations from temperature fluctuations.
We present a homogeneous sample of 1361 L and T dwarfs brighter than J = 17.5 (of which 998 are new), from an effective area of 3070 deg2, classified by the photo-type method to an accuracy of one spectral sub-type using izYJHKW1W2 photometry from SD SS+UKIDSS+WISE. Other than a small bias in the early L types, the sample is shown to be effectively complete to the magnitude limit, for all spectral types L0 to T8. The nature of the bias is an incompleteness estimated at 3% because peculiar blue L dwarfs of type L4 and earlier are classified late M. There is a corresponding overcompleteness because peculiar red (likely young) late M dwarfs are classified early L. Contamination of the sample is confirmed to be small: so far spectroscopy has been obtained for 19 sources in the catalogue and all are confirmed to be ultracool dwarfs. We provide coordinates and izYJHKW1W2 photometry of all sources. We identify an apparent discontinuity, $Delta$m $sim$ 0.4 mag., in the Y-K colour between spectral types L7 and L8. We present near-infrared spectra of nine sources identified by photo-type as peculiar, including a new low-gravity source ULAS J005505.68+013436.0, with spectroscopic classification L2{$gamma$}. We provide revised izYJHKW1W2 template colours for late M dwarfs, types M7 to M9.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا