ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved superconducting qubit coherence using titanium nitride

192   0   0.0 ( 0 )
 نشر من قبل Jerry Chow
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate enhanced relaxation and dephasing times of transmon qubits, up to ~ 60 mu s by fabricating the interdigitated shunting capacitors using titanium nitride (TiN). Compared to lift-off aluminum deposited simultaneously with the Josephson junction, this represents as much as a six-fold improvement and provides evidence that previous planar transmon coherence times are limited by surface losses from two-level system (TLS) defects residing at or near interfaces. Concurrently, we observe an anomalous temperature dependent frequency shift of TiN resonators which is inconsistent with the predicted TLS model.



قيم البحث

اقرأ أيضاً

A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tuneable coupling circuit that allows superconducting qubits to be coupled over long distances. We show tha t the inter-qubit coupling strength can be arbitrarily tuned over nanosecond timescales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over long distances. Such design flexibility is likely to be essential for a scalable quantum computer.
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephson bifurcation amplifier, which leads to an inferred measurement s ensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker ($1/f$) flux noise.
The length of time that a quantum system can exist in a superposition state is determined by how strongly it interacts with its environment. This interaction entangles the quantum state with the inherent fluctuations of the environment. If these fluc tuations are not measured, the environment can be viewed as a source of noise, causing random evolution of the quantum system from an initially pure state into a statistical mixture-a process known as decoherence. However, by accurately measuring the environment in real time, the quantum system can be maintained in a pure state and its time evolution described by a quantum trajectory conditioned on the measurement outcome. We employ weak measurements to monitor a microwave cavity embedding a superconducting qubit and track the individual quantum trajectories of the system. In this architecture, the environment is dominated by the fluctuations of a single electromagnetic mode of the cavity. Using a near-quantum-limited parametric amplifier, we selectively measure either the phase or amplitude of the cavity field, and thereby confine trajectories to either the equator or a meridian of the Bloch sphere. We perform quantum state tomography at discrete times along the trajectory to verify that we have faithfully tracked the state of the quantum system as it diffuses on the surface of the Bloch sphere. Our results demonstrate that decoherence can be mitigated by environmental monitoring and validate the foundations of quantum feedback approaches based on Bayesian statistics. Moreover, our experiments suggest a new route for implementing what Schrodinger termed quantum steering-harnessing action at a distance to manipulate quantum states via measurement.
In dispersive readout schemes, qubit-induced nonlinearity typically limits the measurement fidelity by reducing the signal-to-noise ratio (SNR) when the measurement power is increased. Contrary to seeing the nonlinearity as a problem, here we propose to use it to our advantage in a regime where it can increase the SNR. We show analytically that such a regime exists if the qubit has a many-level structure. We also show how this physics can account for the high-fidelity avalanchelike measurement recently reported by Reed {it et al.} [arXiv:1004.4323v1].
Lossy dielectrics are a significant source of decoherence in superconducting quantum circuits. In this report, we model and compare the dielectric loss in bulk and interfacial dielectrics in titanium nitride (TiN) and aluminum (Al) superconducting co planar waveguide (CPW) resonators. We fabricate isotropically trenched resonators to produce a series of device geometries that accentuate a specific dielectric regions contribution to resonator quality factor. While each dielectric region contributes significantly to loss in TiN devices, the metal-air interface dominates the loss in the Al devices. Furthermore, we evaluate the quality factor of each TiN resonator geometry with and without a post-process hydrofluoric (HF) etch, and find that it reduced losses from the substrate-air interface, thereby improving the quality factor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا