ﻻ يوجد ملخص باللغة العربية
Full-rate space-time block codes (STBCs) achieve high spectral-efficiency by transmitting linear combinations of information symbols through every transmit antenna. However, the coefficients used for the linear combinations, if not chosen carefully, results in ({em i}) large number of processor bits for the encoder and ({em ii}) high peak-to-average power ratio (PAPR) values. In this work, we propose a new class of full-rate STBCs called Integer STBCs (ICs) for multiple-input multiple-output (MIMO) fading channels. A unique property of ICs is the presence of integer coefficients in the code structure which enables reduced numbers of processor bits for the encoder and lower PAPR values. We show that the reduction in the number of processor bits is significant for small MIMO channels, while the reduction in the PAPR is significant for large MIMO channels. We also highlight the advantages of the proposed codes in comparison with the well known full-rate algebraic STBCs.
In multiple-input multiple-output (MIMO) fading channels, the design criterion for full-diversity space-time block codes (STBCs) is primarily determined by the decoding method at the receiver. Although constructions of STBCs have predominantly matche
begin{abstract} In this paper we consider Time-Varying Block (TVB) codes, which generalize a number of previous synchronization error-correcting codes. We also consider various practical issues related to MAP decoding of these codes. Specifically, we
Multicasting is the general method of conveying the same information to multiple users over a broadcast channel. In this work, the Gaussian MIMO broadcast channel is considered, with multiple users and any number of antennas at each node. A closed lo
In this paper we present a block coded modulation scheme for a 2 x 2 MIMO system over slow fading channels, where the inner code is the Golden Code. The scheme is based on a set partitioning of the Golden Code using two-sided ideals whose norm is a p
In this paper the performance limits and design principles of rateless codes over fading channels are studied. The diversity-multiplexing tradeoff (DMT) is used to analyze the system performance for all possible transmission rates. It is revealed fro