ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport Measurement of Landau level Gaps in Bilayer Graphene

220   0   0.0 ( 0 )
 نشر من قبل Chun Ning (Jeanie) Lau
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Landau level gaps are important parameters for understanding electronic interactions and symmetry-broken processes in bilayer graphene (BLG). Here we present transport spectroscopy measurements of LL gaps in double-gated suspended BLG with high mobilities in the quantum Hall regime. By using bias as a spectroscopic tool, we measure the gap {Delta} for the quantum Hall (QH) state at filling factor { u}={pm}4 and -2. The single-particle gap for { u}=4 scales linearly with magnetic field B and is independent of the out-of-plane electric field E. For the symmetry-broken { u}=-2 state, the measured values of gap are 1.1 meV/T and 0.17 meV/T for singly-gated geometry and dual-gated geometry at E=0, respectively. The difference between the two values arises from the E-dependence of the gap, suggesting that the { u}=-2 state is layer polarized. Our studies provide the first measurements of the gaps of the broken symmetry QH states in BLG with well-controlled E, and establish a robust method that can be implemented for studying similar states in other layered materials.



قيم البحث

اقرأ أيضاً

The quantum Hall effect near the charge neutrality point in bilayer graphene is investigated in high magnetic fields of up to 35 T using electronic transport measurements. In the high field regime, the eight-fold degeneracy in the zero energy Landau level is completely lifted, exhibiting new quantum Hall states corresponding filling factors $ u=$0, 1, 2, & 3. Measurements of the activation energy gap in tilted magnetic fields suggest that the Landau level splitting at the newly formed $ u=$1, 2, & 3 filling factors are independent of spin, consistent with the formation of a quantum Hall ferromagnet. In addition, measurements taken at the $ u$ = 0 charge neutral point show that, similar to single layer graphene, the bilayer becomes insulating at high fields.
173 - Yafis Barlas , R. Cote , K. Nomura 2008
Interaction driven integer quantum Hall effects are anticipated in graphene bilayers because of the near-degeneracy of the eight Landau levels which appear near the neutral system Fermi level. We predict that an intra-Landau-level cyclotron resonance signal will appear at some odd-integer filling factors, accompanied by collective modes which are nearly gapless and have approximate $k^{3/2}$ dispersion. We speculate on the possibility of unususal localization physics associated with these modes.
We present magneto-Raman scattering studies of electronic inter Landau level excitations in quasi-neutral graphene samples with different strengths of Coulomb interaction. The band velocity associated with these excitations is found to depend on the dielectric environment, on the index of Landau level involved, and to vary as a function of the magnetic field. This contradicts the single-particle picture of non-interacting massless Dirac electrons, but is accounted for by theory when the effect of electron-electron interaction is taken into account. Raman active, zero-momentum inter Landau level excitations in graphene are sensitive to electron-electron interactions due to the non-applicability of the Kohn theorem in this system, with a clearly non-parabolic dispersion relation.
197 - K. Vakili , T. Gokmen , O. Gunawan 2006
We report measurements of the quantum Hall state energy gap at avoided crossings between Landau levels originating from different conduction band valleys in AlAs quantum wells. These gaps exhibit an approximately linear dependence on magnetic field o ver a wide range of fields and filling factors. More remarkably, we observe an unexpected dependence of the gap size on the relative spin orientation of the crossing levels, with parallel-spin crossings exhibiting larger gaps than antiparallel-spin crossings.
80 - Y. Zhang 2006
The quantum Hall (QH) effect in two-dimensional (2D) electrons and holes in high quality graphene samples is studied in strong magnetic fields up to 45 T. QH plateaus at filling factors $ u=0,pm 1,pm 4$ are discovered at magnetic fields $B>$20 T, ind icating the lifting of the four-fold degeneracy of the previously observed QH states at $ u=pm(|n|+1/2)$, where $n$ is the Landau level index. In particular, the presence of the $ u=0, pm 1$ QH plateaus indicates that the Landau level at the charge neutral Dirac point splits into four sublevels, lifting sublattice and spin degeneracy. The QH effect at $ u=pm 4$ is investigated in tilted magnetic field and can be attributed to lifting of the spin-degeneracy of the $n=1$ Landau level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا