ﻻ يوجد ملخص باللغة العربية
We aim to reveal the gas energetics in the circumstellar environment of the prototypical high-mass protostellar object AFGL2591 using space-based far-infrared observations of linear rotor molecules. Rotational spectral line signatures of CO, HCO+, CS, HCN and HNC from a 490-1240 GHz survey with Herschel/HIFI, complemented by ground-based JCMT and IRAM 30m spectra, cover transitions with E(up)/k between 5 and ~300 K (750K for 12C16O, using selected frequency settings up to 1850 GHz). The resolved spectral line profiles are used to separate and study various kinematic components. The line profiles show two emission components, the widest and bluest of which is attributed to an approaching outflow and the other to the envelope. We find evidence for progressively more redshifted and wider line profiles from the envelope gas with increasing energy level, qualitatively explained by residual outflow contribution picked up in the systematically decreasing beam size. Integrated line intensities for each species decrease as E(up)/k increases from <50 to 700K. We constrain the following: n(H2)~10^5-10^6 cm^-3 and T~60-200K for the outflow gas; T=9-17K and N(H2)~3x10^21 cm^-2 for a known foreground absorption cloud; N(H2)<10^19 cm^-2 for a second foreground component. Our spherical envelope radiative transfer model systematically underproduces observed line emission at E(up)/k > 150 K for all species. This indicates that warm gas should be added to the model and that the models geometry should provide low optical depth pathways for line emission from this warm gas to escape, for example in the form of UV heated outflow cavity walls viewed at a favorable inclination angle. Physical and chemical conditions derived for the outflow gas are similar to those in the protostellar envelope, possibly indicating that the modest velocity (<10 km/s) outflow component consists of recently swept-up gas.
We aim to understand the rich chemical composition of AFGL 2591, a prototypical isolated high-mass star-forming region. Based on HIFI and JCMT data, the molecular abundances of species found in the protostellar envelope of AFGL 2591 were derived wi
The understanding of the formation process of massive stars (>8 Msun) is limited, due to theoretical complications and observational challenges. We investigate the physical structure of the large-scale (~10^4-10^5 AU) molecular envelope of the high
This paper presents the richness of submillimeter spectral features in the high-mass star forming region AFGL 2591. As part of the CHESS (Chemical Herschel Survey of Star Forming Regions) Key Programme, AFGL 2591 was observed by the Herschel/HIFI ins
We derive the dense core structure and the water abundance in four massive star-forming regions which may help understand the earliest stages of massive star formation. We present Herschel-HIFI observations of the para-H2O 1_11-0_00 and 2_02-1_11 and
Broadband spectral surveys of protostars offer a rich view of the physical, chemical and dynamical structure and evolution of star-forming regions. The Herschel Space Observatory opened up the terahertz regime to such surveys, giving access to the fu