ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining The Assembly Of Normal And Compact Passively Evolving Galaxies From Redshift z=3 To The Present With CANDELS

518   0   0.0 ( 0 )
 نشر من قبل Paolo Cassata
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the evolution of the number density, as a function of the size, of passive early-type galaxies with a wide range of stellar masses 10^10<M*/Msun<10^11.5) from z~3 to z~1, exploiting the unique dataset available in the GOODS-South field, including the recently obtained WFC3 images as a part of the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). In particular, we select a sample of 107 massive (M*>10^10 M_sun), passive (SSFR<10^-2 Gyr^-1) and morphologically spheroidal galaxies at 1.2<z<3, taking advantage of the panchromatic dataset available for GOODS, including VLT, CFHT, Spitzer, Chandra and HST ACS+WFC3 data. We find that at 1<z<3 the passively evolving early-type galaxies are the reddest and most massive objects in the Universe, and we prove that a correlation between mass, morphology, color and star-formation activity is already in place at that epoch. We measure a significant evolution in the mass-size relation of passive early-type galaxies (ETGs) from z~3 to z~1, with galaxies growing on average by a factor of 2 in size in a 3 Gyr timescale only. We witness also an increase in the number density of passive ETGs of 50 times over the same time interval. We find that the first ETGs to form at z>2 are all compact or ultra-compact, while normal sized ETGs (meaning ETGs with sizes comparable to those of local counterparts of the same mass) are the most common ETGs only at z<1. The increase of the average size of ETGs at 0<z<1 is primarily driven by the appearance of new large ETGs rather than by the size increase of individual galaxies.



قيم البحث

اقرأ أيضاً

110 - P. Cassata 2011
We report on the evolution of the number density and size of early-type galaxies from z~2 to z~0. We select a sample of 563 massive (M>10^{10} Msun), passively evolving (SSFR<10^{-2} Gyr^{-1}) and morphologically spheroidal galaxies at 0<z<2.5, using the panchromatic photometry and spectroscopic redshifts available in the GOODS fields. We combine ACS and WFC3 HST images to study the morphology of our galaxies in their optical rest-frame in the whole 0<z<2.5 range. We find that throughout the explored redshift range the passive galaxies selected with our criteria have weak morphological K-correction, with size being slightly smaller in the optical than in the UV rest-frame (by ~20 and ~10 at z>1.2 and z<1.2, respectively). We measure a significant evolution of the mass-size relation of early-type galaxies, with the fractional increment that is almost independent on the stellar mass. Early-type galaxies (ETGs) formed at z>1 appear to be preferentially small, and the evolution of the mass-size relation at z<1 is driven by both the continuous size growth of the compact galaxies and the appearance of new ETGs with large sizes. We also find that the number density of all passive early-type galaxies increases rapidly, by a factor of 5, from z~2 to z~1, and then more mildly by another factor of 1.5 from z~1 to z~0. We interpret these results as the evidence that the bulk of the ETGs are formed at 1<z<3 through a mechanism that leaves very compact remnants. At z<1 the compact ETGs grow gradually in size, becoming normal size galaxies, and at the same time new ETGs with normal-large sizes are formed.
158 - P. Saracco 2010
[Abridged]We present a study based on a sample of 62 early-type galaxies (ETGs) at 0.9<z_spec<2 aimed at constraining their past star formation and mass assembly histories. The sample is composed of normal ETGs having effective radii comparable to th e mean radius of local ones and of compact ETGs having effective radii from two to six times smaller. We do not find evidence of a dependence of the compactness of ETGs on their stellar mass. We find that the stellar mass of normal ETGs formed at z_form<3 while the stellar content of compact ETGs formed at 2<z_form<10 with a large fraction of them characterized by z_form>5. Earlier stars formed at z_form>5 are assembled in compact and more massive (M_*>10^11 M_sun) ETGs while stars later formed (z_form<3) or resulting from subsequent episodes of star formation are assembled both in compact and normal ETGs. Thus, the older the stellar population the higher the mass of the hosting galaxy but not vice versa. This suggests that the epoch of formation may play a role in the formation of massive ETGs rather than the mass itself. The possible general scheme in which normal <z>~1.5 ETGs are descendants of high-z compact spheroids enlarged through subsequent dry mergers is not compatible with the current models which predict a number of dry mergers two orders of magnitude lower than the one needed. Moreover, we do not find evidence supporting a dependence of the compactness of galaxies on their redshift of assembly. Finally, we propose a simple scheme of formation and assembly of the stellar mass of ETGs based on dissipative gas-rich merger which can qualitatively account for the co-existence of normal and compact ETGs observed at <z>~1.5 in spite of the same stellar mass, the lack of normal ETGs with high z_form and the absence of correlation between compactness, stellar mass and formation redshift.
[Abridged] Using public data from the NMBS and CANDELS surveys, we study the population of massive galaxies at z>3 to identify the potential progenitors of z~2 compact, massive, quiescent (CMQ) galaxies, furthering our understanding of the evolution of massive galaxies. Our work is enabled by high-resolution CANDELS images and accurate photometric redshifts, stellar masses and star formation rates (SFRs) from 37-band NMBS photometry. The total number of z>3 massive galaxies is consistent with the number of massive quiescent (MQ) galaxies at z~2, implying that the SFRs for all of these galaxies must be much lower by z~2. We discover 4 CMQ galaxies at z>3, pushing back the time for which such galaxies have been observed. However, the volume density for these galaxies is significantly less than that of galaxies at z<2 with similar masses, SFRs, and sizes, implying that additional CMQ galaxies must be created in the ~1 Gyr between z=3 and z=2. We find 5 star-forming galaxies at z~3 that are compact (Re<1.4 kpc) and have stellar mass M*>10^(10.6)Msun, likely to become members of the CMQ galaxy population at z~2. We evolve the stellar masses and SFRs of each individual z>3 galaxy adopting 5 different star formation histories (SFHs) and studying the resulting population of massive galaxies at z=2.3. We find that declining or truncated SFHs are necessary to match the observed number density of MQ galaxies at z~2, whereas a constant SFH results in a number density significantly smaller than observed. All of our assumed SFHs imply number densities of CMQ galaxies at z~2 that are consistent with the observed number density. Better agreement with the observed number density of CMQ galaxies at z~2 is obtained if merging is included in the analysis and better still if star formation quenching is assumed to shortly follow the merging event, as implied by recent models of formation of MQ galaxies.
[Abridged] We present the results of new near-IR spectroscopic observations of passive galaxies at z>1.4 in a concentration of BzK-selected galaxies in the COSMOS field. The observations have been conducted with Subaru/MOIRCS, and have resulted in ab sorption lines and/or continuum detection for 18 out of 34 objects. This allows us to measure spectroscopic redshifts for a sample almost complete to K(AB)=21. COSMOS photometric redshifts are found in fair agreement overall with the spectroscopic redshifts, with a standard deviation of ~0.05; however, ~30% of objects have photometric redshifts systematically underestimated by up to ~25%. We show that these systematic offsets in photometric redshifts can be removed by using these objects as a training set. All galaxies fall in four distinct redshift spikes at z=1.43, 1.53, 1.67 and 1.82, with this latter one including 7 galaxies. SED fits to broad-band fluxes indicate stellar masses in the range of ~4-40x10^10Msun and that star formation was quenched ~1 Gyr before the cosmic epoch at which they are observed. The spectra of several individual galaxies have allowed us to measure their Hdelta_F and Dn4000 indices, which confirms their identification as passive galaxies, as does a composite spectrum resulting from the coaddition of 17 individual spectra. The effective radii of the galaxies have been measured on the HST/ACS F814W image, confirming the coexistence at these redshifts of passive galaxies which are substantially more compact than their local counterparts with others that follow the local size-stellar mass relation. For the galaxy with best S/N spectrum we were able to measure a velocity dispersion of 270+/-105 km/s, indicating that this galaxy lies closely on the virial relation given its stellar mass and effective radius.
177 - Guillermo Barro 2012
We combine high-resolution HST/WFC3 images with multi-wavelength photometry to track the evolution of structure and activity of massive (log(M*) > 10) galaxies at redshifts z = 1.4 - 3 in two fields of the Cosmic Assembly Near-infrared Deep Extragala ctic Legacy Survey (CANDELS). We detect compact, star-forming galaxies (cSFGs) whose number densities, masses, sizes, and star formation rates qualify them as likely progenitors of compact, quiescent, massive galaxies (cQGs) at z = 1.5 - 3. At z > 2 most cSFGs have specific star-formation rates (sSFR = 10^-9 yr^-1) half that of typical, massive SFGs at the same epoch, and host X-ray luminous AGN 30 times (~30%) more frequently. These properties suggest that cSFGs are formed by gas-rich processes (mergers or disk-instabilities) that induce a compact starburst and feed an AGN, which, in turn, quench the star formation on dynamical timescales (few 10^8 yr). The cSFGs are continuously being formed at z = 2 - 3 and fade to cQGs by z = 1.5. After this epoch, cSFGs are rare, thereby truncating the formation of new cQGs. Meanwhile, down to z = 1, existing cQGs continue to enlarge to match local QGs in size, while less-gas-rich mergers and other secular mechanisms shepherd (larger) SFGs as later arrivals to the red sequence. In summary, we propose two evolutionary scenarios of QG formation: an early (z > 2), fast-formation path of rapidly-quenched cSFGs that evolve into cQGs that later enlarge within the quiescent phase, and a slow, late-arrival (z < 2) path for SFGs to form QGs without passing through a compact state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا