ﻻ يوجد ملخص باللغة العربية
Engineering the interaction between light and matter is an important goal in the emerging field of quantum opto-electronics. Thanks to the use of cavity quantum electrodynamics architectures, one can envision a fully hybrid multiplexing of quantum conductors. Here, we use such an architecture to couple two quantum dot circuits . Our quantum dots are separated by 200 times their own size, with no direct tunnel and electrostatic couplings between them. We demonstrate their interaction, mediated by the cavity photons. This could be used to scale up quantum bit architectures based on quantum dot circuits or simulate on-chip phonon-mediated interactions between strongly correlated electrons.
We study the photonic interactions between two distant atoms which are coupled by an optical element (a lens or an optical fiber) focussing part of their emitted radiation onto each other. Two regimes are distinguished depending on the ratio between
Scalable architectures for quantum information technologies require to selectively couple long-distance qubits while suppressing environmental noise and cross-talk. In semiconductor materials, the coherent coupling of a single spin on a quantum dot t
Spin qubits have been successfully realized in electrostatically defined, lateral few-electron quantum dot circuits. Qubit readout typically involves spin to charge information conversion, followed by a charge measurement made using a nearby biased q
Significant experimental advances in single-electron silicon spin qubits have opened the possibility of realizing long-range entangling gates mediated by microwave photons. Recently proposed iSWAP gates, however, require tuning qubit energies into re
Interference of a single photon generated from a single quantum dot is observed between two photon polarization modes. Each emitted single photon has two orthogonal polarization modes associated with the solid-state single photon source, in which two