ترغب بنشر مسار تعليمي؟ اضغط هنا

Inhomogeneous transport in model hydrated polymer electrolyte supported ultra-thin films

198   0   0.0 ( 0 )
 نشر من قبل Stefano Mossa
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Structure of polymer electrolytes membranes, e.g., Nafion, inside fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be found as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films and, in turn, on transport properties, has not been sufficiently explored yet. Here, we report about classical Molecular Dynamics simulations of hydrated Nafion thin-films in contact with unstructured supports, characterized by their global wetting properties only. We have investigated structure and transport in different regions of the film and found evidences of strongly heterogeneous behavior. We speculate about the implications of our work on experimental and technological activity.



قيم البحث

اقرأ أيضاً

Morphology of polymer electrolytes membranes (PEM), e.g., Nafion, inside PEM fuel cell catalyst layers has significant impact on the electrochemical activity and transport phenomena that determine cell performance. In those regions, Nafion can be fou nd as an ultra-thin film, coating the catalyst and the catalyst support surfaces. The impact of the hydrophilic/hydrophobic character of these surfaces on the structural formation of the films has not been sufficiently explored yet. Here, we report about Molecular Dynamics simulation investigation of the substrate effects on the ionomer ultra-thin film morphology at different hydration levels. We use a mean-field-like model we introduced in previous publications for the interaction of the hydrated Nafion ionomer with a substrate, characterized by a tunable degree of hydrophilicity. We show that the affinity of the substrate with water plays a crucial role in the molecular rearrangement of the ionomer film, resulting in completely different morphologies. Detailed structural description in different regions of the film shows evidences of strongly heterogeneous behavior. A qualitative discussion of the implications of our observations on the PEMFC catalyst layer performance is finally proposed.
This study reveals the influence of the surface energy and solid/liquid boundary condition on the breakup mechanism of dewetting ultra-thin polymer films. Using silane self-assembled monolayers, SiO$_2$ substrates are rendered hydrophobic and provide a strong slip rather than a no-slip solid/liquid boundary condition. On undergoing these changes, the thin-film breakup morphology changes dramatically -- from a spinodal mechanism to a breakup which is governed by nucleation and growth. The experiments reveal a dependence of the hole density on film thickness and temperature. The combination of lowered surface energy and hydrodynamic slip brings the studied system closer to the conditions encountered in bursting unsupported films. As for unsupported polymer films, a critical nucleus size is inferred from a free energy model. This critical nucleus size is supported by the film breakup observed in the experiments using high speed emph{in situ} atomic force microscopy.
The force-level Elastically Collective Nonlinear Langevin Equation theory of activated relaxation in glass-forming free-standing thin films is re-visited to improve its treatment of collective elasticity effects. The naive cut off of the isotropic bu lk displacement field approximation is improved to explicitly include spatial anisotropy with a modified boundary condition consistent with a step function liquid-vapor interface. The consequences of this improvement on dynamical predictions are quantitative but of significant magnitude and in the direction of further speeding up dynamics and further suppressing Tg. The theory is applied to thin films and also thick films to address new questions for three different polymers of different dynamic fragility. Variation of the vitrification time scale criterion over many orders of magnitude is found to have a minor effect on changes of the film-averaged Tg relative to its bulk value. The mobile layer length scale grows strongly with cooling and correlates in a nearly linear manner with the effective barrier deduced from the corresponding bulk isotropic liquid alpha relaxation time. The theory predicts a new type of spatially inhomogeneous dynamic decoupling corresponding to an effective factorization of the total barrier into its bulk temperature-dependent value multiplied by a function that only depends on location in the film. The effective decoupling exponent grows as the vapor surface is approached. Larger reductions of the absolute value of Tg shifts in thin polymer films are predicted for longer time vitrification criteria and more fragile polymers. Quantitative no-fit-parameter comparisons with experiment and simulation for film-thickness-dependent Tg shifts of PS and PC are in reasonable accord with the theory, including a nearly 100 K suppression of Tg in 4 nm PC films. Predictions are made for polyisobutylene thin films.
A controversy arose over the interpretation of the recently observed hump features in Hall resistivity $rho_{xy}$ from ultra-thin SrRuO$_3$ (SRO) film; it was initially interpreted to be due to topological Hall effect but was later proposed to be fro m existence of regions with different anomalous Hall effect (AHE). In order to settle down the issue, we performed Hall effect as well as magneto-optic Kerr-effect measurements on 4 unit cell SRO films grown on SrTiO$_3$ (001) substrates. Clear hump features are observed in the measured $rho_{xy}$, whereas neither hump feature nor double hysteresis loop is seen in the Kerr rotation which should be proportional to the magnetization. In addition, magnetization measurement by superconducting quantum interference device shows no sign of multiple coercive fields. These results show that inhomogeneous AHE alone cannot explain the observed hump behavior in $rho_{xy}$ data from our SRO ultra-thin films. We found that emergence of the hump structure in $rho_{xy}$ is closely related to the growth condition, high quality films having clear sign of humps.
In both research and industrial settings spin coating is extensively used to prepare highly uniform thin polymer films. However, under certain conditions, spin coating results in films with non-uniform surface morphologies. Although the spin coating process has been extensively studied, the origin of these morphologies is not fully understood and the formation of non-uniform spincast films remains a practical problem. Here we report on experiments demonstrating that the formation of surface instabilities during spin coating is dependent on temperature. Our results suggest that non-uniform spincast films form as a result of the Marangoni effect, which describes flow due to surface tension gradients. We find that both the wavelength and amplitude of the pattern increase with temperature. Finally, and most important from a practical viewpoint, the non-uniformities in the film thickness can be entirely avoided simply by lowering the spin coating temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا