ﻻ يوجد ملخص باللغة العربية
We present a study of the DNA translocation of the bacteriophage phi 29 packaging molecular motor. From the experimental available information we present a model system based in an stochastic fashing potential, which reproduces the experimental observations such as: detailed trajectories, steps and substeps, spatial correlation, and velocity. Moreover the model allows the evaluation of power and efficiency of this motor. We have found that the maximum power regime does not correspond with that of the maximum efficiency. These informations can stimulate further experiments.
Solid-state nanopores are single molecule sensors that measure changes in ionic current as charged polymers such as DNA pass through. Here, we present comprehensive experiments on the length, voltage and salt dependence of the frequency of double-str
The statistical properties of protein folding within the {phi}^4 model are investigated. The calculation is performed using statistical mechanics and path integral method. In particular, the evolution of heat capacity in term of temperature is given
DNA is a flexible molecule, but the degree of its flexibility is subject to debate. The commonly-accepted persistence length of $l_p approx 500,$AA is inconsistent with recent studies on short-chain DNA that show much greater flexibility but do not p
In many intracellular processes, the length distribution of microtubules is controlled by depolymerizing motor proteins. Experiments have shown that, following non-specific binding to the surface of a microtubule, depolymerizers are transported to th
Conformational change of a DNA molecule is frequently observed in multiple biological processes and has been modelled using a chain of strongly coupled oscillators with a nonlinear bistable potential. While the mechanism and properties of conformatio