ﻻ يوجد ملخص باللغة العربية
We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four different techniques to combine the Herschel PACS+SPIRE data at 160 - 500 microns with the SCUBA-2 data at 450 microns and 850 microns. Of our four techniques, we found the most robust method was to filter-out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find beta ~ 2 towards the filament region and moderately dense material and lower beta values (beta > 1.6) towards the dense protostellar cores, possibly due to dust grain growth. We find that beta and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of ~ 2 for beta and by ~ 40% for temperature. Furthermore, we find core mass differences of < 30% compared to Herschel-only estimates with an adopted beta = 2, highlighting the necessity of long wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.
The JCMT Gould Belt Survey was one of the first Legacy Surveys with the James Clerk Maxwell Telescope in Hawaii, mapping 47 square degrees of nearby (< 500 pc) molecular clouds in both dust continuum emission at 850 $mu$m and 450 $mu$m, as well as a
We present 850$mu$m and 450$mu$m data from the JCMT Gould Belt Survey obtained with SCUBA-2 and characterise the dust attributes of Class I, Class II and Class III disk sources in L1495. We detect 23% of the sample at both wavelengths, with the detec
The dust emissivity spectral index, $beta$, is a critical parameter for deriving the mass and temperature of star-forming structures, and consequently their gravitational stability. The $beta$ value is dependent on various dust grain properties, such
We present 850 and 450 micron observations of the dense regions within the Auriga-California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstel
We present observations of the Cepheus Flare obtained as part of the James Clerk Maxwell Telescope (JCMT) Gould Belt Legacy Survey (GBLS) with the SCUBA-2 instrument. We produce a catalogue of sources found by SCUBA-2, and separate these into starles