ترغب بنشر مسار تعليمي؟ اضغط هنا

Rank 2 ACM bundles on complete intersection Calabi-Yau threefolds

287   0   0.0 ( 0 )
 نشر من قبل Matej Filip
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Matej Filip




اسأل ChatGPT حول البحث

The aim of this paper is to classify indecomposable rank 2 arithmetically Cohen-Macaulay (ACM) bundles on compete intersection Calabi-Yau (CICY) threefolds and prove the existence of some of them. New geometric properties of the curves corresponding to rank 2 ACM bundles (by Serre correspondence) are obtained. These follow from minimal free resolutions of curves in suitably chosen fourfolds (containing Calabi-Yau threefolds as hypersurfaces). Also the existence of an indecomposable vector bundle of higher rank on a CICY threefold of type (2,4) is proved.



قيم البحث

اقرأ أيضاً

In this note we initiate a program to obtain global descriptions of Calabi-Yau moduli spaces, to calculate their Picard group, and to identify within that group the Hodge line bundle, and the closely-related Bagger-Witten line bundle. We do this here for several Calabi-Yaus obtained in [DW09] as crepant resolutions of the orbifold quotient of the product of three elliptic curves. In particular we verify in these cases a recent claim of [GHKSST16] by noting that a power of the Hodge line bundle is trivial -- even though in most of these cases the Picard group is infinite.
In the present paper we propose a combinatorial approach to study the so called double octic Clabi--Yau threefolds. We use this description to give a complete classification of double octics with $h^{1,2}le1$ and to derive their geometric properties (Kummer surface fibrations, automorphisms, special elements in families).
We give a criterion for a nef divisor $D$ to be semiample on a Calabi--Yau threefold $X$ when $D^3=0=c_2(X)cdot D$ and $c_3(X) eq 0$. As a direct consequence, we show that on such a variety $X$, if $D$ is strictly nef and $ u(D) eq 1$, then $D$ is am ple; we also show that if there exists a nef non-ample divisor $D$ with $D otequiv 0$, then $X$ contains a rational curve when its topological Euler characteristic is not $0$.
For complete intersection Calabi-Yau manifolds in toric varieties, Gross and Haase-Zharkov have given a conjectural combinatorial description of the special Lagrangian torus fibrations whose existence was predicted by Strominger, Yau and Zaslow. We p resent a geometric version of this construction, generalizing an earlier conjecture of the first author.
In this paper, we classify non-freely acting discrete symmetries of complete intersection Calabi- Yau manifolds and their quotients by freely-acting symmetries. These non-freely acting symmetries can appear as symmetries of low-energy theories result ing from string compactifications on these Calabi-Yau manifolds, particularly in the context of the heterotic string. Hence, our results are relevant for four-dimensional model building with discrete symmetries and they give an indication which symmetries of this kind can be expected from string theory. For the 1695 known quotients of complete intersection manifolds by freely-acting discrete symmetries, non-freely-acting, generic symmetries arise in 381 cases and are, therefore, a relatively common feature of these manifolds. We find that 9 different discrete groups appear, ranging in group order from 2 to 18, and that both regular symmetries and R-symmetries are possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا