ﻻ يوجد ملخص باللغة العربية
We consider the simultaneous propagation of a pair of Raman-resonant, frequency-modulated (chirped) laser pulses in an optically thick medium, modeled by an ensemble of $Lambda$-atoms. A self-organization (matching`) effect is shown for the chirped pulse pair, which leads to a quasi-lossless propagation. Furthermore, we demonstrate that a well-defined coherent superposition of the atomic ground states and, correspondingly, a coherence is robustly created in the medium that can be controlled by amplitudes of the laser pulses. The proposed scheme can be applied to substantially increase the efficiency of the optical wave mixing processes, as well as in other nonlinear processes where the initial preparation of a spatially extended medium in a coherent superposition state is required.
An optically thick cold atomic cloud emits a coherent flash of light in the forward direction when the phase of an incident probe field is abruptly changed. Because of cooperativity, the duration of this phenomena can be much shorter than the excited
We study the Fermi-Hubbard model in the strongly correlated Mott phase under the influence of a harmonically oscillating electric field, e.g., a pump laser. In the Peierls representation, this pump field can be represented as an oscillating phase of
We have observed the ultraslow propagation of matched pulses in nondegenerate four-wave mixing in a hot atomic vapor. Probe pulses as short as 70 ns can be delayed by a tunable time of up to 40 ns with little broadening or distortion. During the prop
The creation of matter and structure in our universe is currently described by an intricate interplay of quantum field theory and general relativity. Signatures of this process during an early inflationary period can be observed, while direct tests r
Using a single channel active Raman gain medium we show a $(220pm 20)$ns advance time for an optical pulse of $tau_{FWHM}=15.4 mu$s propagating through a 10 cm medium, a lead time that is comparable to what was reported previously. In addition, we ha