ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical-to-Near-Infrared Simultaneous Observations for the Hot Uranus GJ3470b: A Hint for Cloud-free Atmosphere

128   0   0.0 ( 0 )
 نشر من قبل Akihiko Fukui
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present optical (g, R_c, and I_c) to near-infrared (J) simultaneous photometric observations for a primary transit of GJ3470b, a Uranus-mass transiting planet around a nearby M dwarf, by using the 50-cm MITSuME telescope and the 188-cm telescope, both at Okayama Astrophysical Observatory. From these data, we derive the planetary mass, radius, and density as 14.1 pm 1.3 M_earth, 4.32^{+0.21}_{-0.10} R_earth, and 0.94 pm 0.12 g cm^{-3}, respectively, thus confirming the low density that was reported by Demory et al. based on the Spitzer/IRAC 4.5-micron photometry (0.72^{+0.13}_{-0.12} g cm^{-3}). Although the planetary radius is about 10% smaller than that reported by Demory et al., this difference does not alter their conclusion that the planet possesses a hydrogen-rich envelope whose mass is approximately 10% of the planetary total mass. On the other hand, we find that the planet-to-star radius ratio (R_p/R_s) in the J band (0.07577^{+0.00072}_{-0.00075}) is smaller than that in the I_c (0.0802 pm 0.0013) and 4.5-micron (0.07806^{+0.00052}_{-0.00054}) bands by 5.9% pm 2.0% and 3.0% pm 1.2%, respectively. A plausible explanation for the differences is that the planetary atmospheric opacity varies with wavelength due to absorption and/or scattering by atmospheric molecules. Although the significance of the observed R_p/R_s variations is low, if confirmed, this fact would suggest that GJ3470b does not have a thick cloud layer in the atmosphere. This property would offer a wealth of opportunity for future transmission-spectroscopic observations of this planet to search for certain molecular features, such as H2O, CH4, and CO, without being prevented by clouds.



قيم البحث

اقرأ أيضاً

The naked-eye star 55 Cancri hosts a planetary system with five known planets, including a hot super-Earth (55 Cnc e) extremely close to its star and a farther out giant planet (55 Cnc b), found in milder irradiation conditions with respect to other known hot Jupiters. This system raises important questions on the evolution of atmospheres for close-in exoplanets, and the dependence with planetary mass and irradiation. These questions can be addressed by Lyman-alpha transit observations of the extended hydrogen planetary atmospheres, complemented by contemporaneous measurements of the stellar X-ray flux. In fact, planet `e has been detected in transit, suggesting the system is seen nearly edge-on. Yet, planet `b has not been observed in transit so far. Here, we report on Hubble Space Telescope STIS Lyman-alpha and Chandra ACIS-S X-ray observations of 55 Cnc. These simultaneous observations cover two transits of 55 Cnc e and two inferior conjunctions of 55 Cnc b. They reveal the star as a bright Lyman-alpha target and a variable X-ray source. While no significant signal is detected during the transits of 55 Cnc e, we detect a surprising Lyman-alpha absorption of 7.5 +/- 1.8% (4.2 sigma) at inferior conjunctions of 55 Cnc b. The absorption is only detected over the range of Doppler velocities where the stellar radiation repels hydrogen atoms towards the observer. We calculate a false-alarm probability of 4.4%, which takes into account the a-priori unknown transit parameters. This result suggests the possibility that 55 Cnc b has an extended upper H I atmosphere, which undergoes partial transits when the planet grazes the stellar disc. If confirmed, it would show that planets cooler than hot Jupiters can also have extended atmospheres.
We present multi-wavelength photometric monitoring of WD 1145+017, a white dwarf exhibiting periodic dimming events interpreted to be the transits of orbiting, disintegrating planetesimals. Our observations include the first set of near-infrared ligh t curves for the object, obtained on multiple nights over the span of one month, and recorded multiple transit events with depths varying between ~20 to 50 per cent. Simultaneous near-infrared and optical observations of the deepest and longest duration transit event were obtained on two epochs with the Anglo-Australian Telescope and three optical facilities, over the wavelength range of 0.5 to 1.2 microns. These observations revealed no measurable difference in transit depths for multiple photometric pass bands, allowing us to place a 2 sigma lower limit of 0.8 microns on the grain size in the putative transiting debris cloud. This conclusion is consistent with the spectral energy distribution of the system, which can be fit with an optically thin debris disc with minimum particle sizes of 10 +5/-3 microns.
84 - Leigh N. Fletcher 2021
Uranus provides a unique laboratory to test our understanding of planetary atmospheres under extreme conditions. Multi-spectral observations from Voyager, ground-based observatories, and space telescopes have revealed a delicately banded atmosphere p unctuated by storms, waves, and dark vortices, evolving slowly under the seasonal influence of Uranus extreme axial tilt. Condensables like methane and hydrogen sulphide play a crucial role in shaping circulation, clouds, and storm phenomena via latent heat release through condensation, strong equator-to-pole gradients suggestive of equatorial upwelling and polar subsidence, and through forming stabilising layers that may decouple different circulation and convective regimes as a function of depth. Weak vertical mixing and low atmospheric temperatures associated with Uranus negligible internal heat means that stratospheric methane photochemistry occurs in a unique high-pressure regime, decoupled from the influx of external oxygen. The low homopause also allows for the formation of an extensive ionosphere. Finally, the atmosphere provides a window on the bulk composition of Uranus - the ice-to-rock ratio, supersolar elemental and isotopic enrichments inferred from remote sensing and future textit{in situ} measurements - providing key insights into its formation and subsequent migration. This review reveals the state of our knowledge of the time-variable circulation, composition, meteorology, chemistry, and clouds on this enigmatic `Ice Giant, summarising insights from more than three decades of observations, and highlighting key questions for the next generation of planetary missions. As a hydrogen-dominated, intermediate-sized, and chemically-enriched world, Uranus could be our closest and best example of atmospheric processes on a class of worlds that may dominate the census of planets beyond our own Solar System.
Having a short orbital period and being tidally locked makes WASP-43b an ideal candidate for JWST observations. Phase curve observations of an entire orbit will enable the mapping of the atmospheric structure across the planet, with different wavelen gths of observation allowing different atmospheric depths to be seen. We provide insight into the details of the clouds that may form on WASP-43b in order to prepare the forthcoming interpretation of the JWST and follow-up data. We utilize 3D GCM results as input for a kinetic, non-equilibrium model for mineral cloud particles, and for a kinetic model to study a photochemicaly-driven hydrocarbon haze component. Mineral condensation seeds form throughout the atmosphere of WASP-43b. This is in stark contrast to the ultra-hot Jupiters, like WASP-18b and HAT-P-7b. The dayside is loaded with few but large mineral cloud particles in addition to hydrocarbon haze particles of comparable abundance. Photochemically driven hydrocarbon haze appears on the dayside, but does not contribute to the cloud formation on the nightside. The geometrical cloud extension differs across the globe due to the changing thermodynamic conditions. Day and night differ by 6000km in pressure scale height. As reported for other planets, the C/O is not constant throughout the atmosphere. The mean molecular weight is approximately constant in a H2-dominated WASP-43b. WASP-43b is expected to be fully covered in clouds which are not homogeneously distributed throughout the atmosphere. The dayside and the terminator clouds will be a combination of mineral particles of locally varying size and composition, and of hydrocarbon hazes. The optical depth of hydrocarbon hazes is considerably lower than that of mineral cloud particles such that a wavelength-dependent radius measurement of WASP-43b would be determined by the mineral cloud particles but not by hazes.
We announce the discovery of a low-mass planet orbiting the super metal-rich K0V star HD77338 as part of our on-going Calan-Hertfordshire Extrasolar Planet Search. The best fit planet solution has an orbital period of 5.7361pm0.0015 days and with a r adial velocity semi-amplitude of only 5.96pm1.74 m/s, we find a minimum mass of 15.9+4.7-5.3 Me. The best fit eccentricity from this solution is 0.09+0.25-0.09, and we find agreement for this data set using a Bayesian analysis and a periodogram analysis. We measure a metallicity for the star of +0.35pm0.06 dex, whereas another recent work (Trevisan et al. 2011) finds +0.47pm0.05 dex. Thus HD77338b is one of the most metal-rich planet host stars known and the most metal-rich star hosting a sub-Neptune mass planet. We searched for a transit signature of HD77338b but none was detected. We also highlight an emerging trend where metallicity and mass seem to correlate at very low masses, a discovery that would be in agreement with the core accretion model of planet formation. The trend appears to show that for Neptune-mass planets and below, higher masses are preferred when the host star is more metal-rich. Also a lower boundary is apparent in the super metal-rich regime where there are no very low-mass planets yet discovered in comparison to the sub-solar metallicity regime. A Monte Carlo analysis shows that this, low-mass planet desert, is statistically significant with the current sample of 36 planets at around the 4.5sigma level. In addition, results from Kepler strengthen the claim for this paucity of the lowest-mass planets in super metal-rich systems. Finally, this discovery adds to the growing population of low-mass planets around low-mass and metal-rich stars and shows that very low-mass planets can now be discovered with a relatively small number of data points using stable instrumentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا