ﻻ يوجد ملخص باللغة العربية
We perform a numerical investigation of the effect of the disorder associated with randomly located impurities on shot noise in mesoscopic cavities. We show that such a disorder becomes dominant in determining the noise behavior when the amplitude of the potential fluctuations is comparable to the value of the Fermi energy and for a large enough density of impurities. In contrast to existing conjectures, random potential fluctuations are shown not to contribute to achieving the chaotic regime whose signature is a Fano factor of 1/4, but, rather, to the diffusive behavior typical of disordered conductors. In particular, the 1/4 suppression factor expected for a symmetric cavity can be achieved only in high-quality material, with a very low density of impurities. As the disorder strength is increased, a relatively rapid transition of the suppression factor from 1/4 to values typical of diffusive or quasi-diffusive transport is observed. Finally, on the basis of a comparison between a hard-wall and a realistic model of the cavity, we conclude that the specific details of the confinement potential have a minor influence on noise.
We present a numerical investigation of shot noise suppression in mesoscopic cavities and an intuitive semiclassical explanation of the behavior observed in the presence of an orthogonal magnetic field. In particular, we conclude that the decrease of
The standard description of cavity-modified molecular reactions typically involves a single (resonant) mode, while in reality the quantum cavity supports a range of photon modes. Here we demonstrate that as more photon modes are accounted for, physic
We have measured the shot noise in a quantum point contact (QPC) fabricated by using InGaAs/InGaAsP heterostructure, whose conductance can be electrically tuned by the gate voltages. The reduced shot noise is observed when the QPC conductance equals
We have derived a general formula describing current noise in multimode ballistic channels connecting source and drain electrodes with Fermi electron gas. In particular (at $eVgg k_{B}T$), the expression describes the nonequilibrium shot noise, which
We present a new scheme to detect the quantum shot noise in coupled mesoscopic systems. By applying the noise thermometry to the capacitively coupled quantum point contacts (QPCs) we prove that the noise temperature of one QPC is in perfect proportio