ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonantly damped oscillations of elliptically shaped stratified emerging coronal loops

125   0   0.0 ( 0 )
 نشر من قبل Zanyar Ebrahimi
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The effects of both elliptical shape and stage of emergence of the coronal loop on the resonant absorption of standing kink oscillations are studied. To do so, a typical coronal loop is modeled as a zero-beta longitudinally stratified cylindrical magnetic flux tube. We developed the connection formulae for the resonant absorption of standing transversal oscillations of a coronal loop with an elliptical shape, at various stages of its emergence. Using the connection formulae, the dispersion relation is derived and solved numerically to obtain the frequencies and damping rates of the fundamental and first-overtone kink modes. Our numerical results show that both the elliptical shape and stage of emergence of the loop alter the frequencies and damping rates of the tube as well as the ratio of frequencies of the fundamental and its first-overtone modes. However, the ratio of the oscillation frequency to the damping rate is not affected by the tube shape and stage of its emergence and also is independent of the density stratification parameter.



قيم البحث

اقرأ أيضاً

We investigate the nature of transverse kink oscillations of loops expanding through the solar corona and how can oscillations be used to diagnose the plasma parameters and the magnetic field. In particular, we aim to analyse how the temporal depende nce of the loop length (here modelling the expansion) will affect the P1 /P2 period ratio of transverse loop oscillations. Due to the uncertainty of the loops shape through its expansion, we discuss separately the case of the loop that maintains its initial semi-circular shape and the case of the loop that from a semi-circular shape evolve into an elliptical shape loop. The equations that describe the oscillations in expanding flux tube are complicated due to the spatial and temporal dependence of coefficients. Using the WKB approximation we find approximative values for periods and their evolution, as well as the period ratio. For small values of time (near the start of the expansion) we can employ a regular perturbation method to find approximative relations for eigenfunctions and eigenfrequencies. Using simple analytical and numerical methods we show that the period of oscillations are affected by the rising of the coronal loop. The change in the period due to the increase in the loops length is more pronounced for those loops that expand into a more structured (or cooler corona). The deviation of periods will have significant implications in determining the degree of stratification in the solar corona. The effect of expansion on the periods of oscillations is considerable only in the process of expansion of the loop but not when it reached its final stage.
We aim to study the influence of radiative cooling on the standing kink oscillations of a coronal loop. Using the FLASH code, we solved the 3D ideal magnetohydrodynamic equations. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturbed the system initially, leading to a transverse oscillation of the structure, and followed its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory. We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). In high amplitude runs with realistic cooling, instabilities deform the loop, leading to increased damping. In this case, the difference between cooling and non-cooling is still negligible at around 12%. A set of simulations with higher density loops are also performed, to explore what happens when the cooling takes place in a very short time (tcool = 100 s). We strengthen the results of previous analytical studies that state that the amplification due to cooling is ineffective, and its influence on the oscillation characteristics is small, at least for the cases shown here. Furthermore, the presence of a relatively strong damping in the high amplitude runs even in the fast cooling case indicates that it is unlikely that cooling could alone account for the observed, flare-related undamped oscillations of coronal loops. These results may be significant in the field of coronal seismology, allowing its application to coronal loop oscillations with observed fading-out or cooling behaviour.
In recent years, coronal loops have been the focus of studies related to the damping of different magnetohydrodynamic (MHD) surface waves and their connection with coronal seismology and wave heating. For a better understanding of wave heating, we ne ed to take into account the effects of different dissipation coefficients such as resistivity and viscosity, the importance of the loop physical characteristics, and the ways gravity can factor into the evolution of these phenomena. We aim to map the sites of energy dissipation from transverse waves in coronal loops in the presence and absence of gravitational stratification and to compare ideal, resistive, and viscous MHD. Using the PLUTO code, we performed 3D MHD simulations of kink waves in single, straight, density-enhanced coronal flux tubes of multiple temperatures. We see the creation of spatially expanded Kelvin-Helmholtz eddies along the loop, which deform the initial monolithic loop profile. For the case of driven oscillations, the Kelvin-Helmholtz instability develops despite physical dissipation, unless very high values of shear viscosity are used. Energy dissipation gets its highest values near the apex, but is present all along the loop. We observe an increased efficiency of wave heating once the kinetic energy saturates at the later stages of the simulation and a turbulent density profile has developed. The inclusion of gravity greatly alters the dynamic evolution of our systems and should not be ignored in future studies. Stronger physical dissipation leads to stronger wave heating in our set-ups. Finally, once the kinetic energy of the oscillating loop starts saturating, all the excess input energy turns into internal energy, resulting in more efficient wave heating.
Evidence of flare induced, large-amplitude, decay-less transverse oscillations is presented. A system of multi-thermal coronal loops as observed with the Atmospheric Imaging Assembly (AIA), exhibit decay-less transverse oscillations after a flare eru pts nearby one of the loop footpoints. Measured oscillation periods lie between 4.2 min and 6.9 min wherein the displacement amplitudes range from 0.17 Mm to 1.16 Mm. A motion-magnification technique is employed to detect the pre-flare decay-less oscillations. These oscillations have similar periods (between 3.7 min and 5.0 min) like the previous ones but their amplitudes (0.04 Mm to 0.12 Mm) are found to be significantly smaller. No phase difference is found among oscillating threads of a loop when observed through a particular AIA channel or when their multi-channel signatures are compared. These features suggest that the occurrence of a flare in this case neither changed the nature of these oscillations (decaying vs decay-less) nor the oscillation periods. The only effect the flare has is to increase the oscillation amplitudes.
Coronal loops are building blocks of solar active regions. However, their formation mechanism is still not well understood. Here we present direct observational evidence for the formation of coronal loops through magnetic reconnection as new magnetic fluxes emerge into the solar atmosphere. Extreme-ultraviolet observations of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) clearly show the newly formed loops following magnetic reconnection within a plasma sheet. Formation of the loops is also seen in the h{alpha} line-core images taken by the New Vacuum Solar Telescope. Observations from the Helioseismic and Magnetic Imager onboard SDO show that a positive-polarity flux concentration moves towards a negative-polarity one with a speed of ~0.4 km/s, before the formation of coronal loops. During the loop formation process, we found signatures of flux cancellation and subsequent enhancement of the transverse field between the two polarities. The three-dimensional magnetic field structure reconstructed through a magnetohydrostatic model shows field lines consistent with the loops in AIA images. Numerous bright blobs with an average width of 1.37 Mm appear intermittently in the plasma sheet and move upward with a projected velocity of ~114 km/s. The temperature, emission measure and density of these blobs are about 3 MK, 2.0x10^(28) cm^(-5) and 1.2x10^(10) cm^(-3), respectively. A power spectral analysis of these blobs indicates that the observed reconnection is likely not dominated by a turbulent process. We have also identified flows with a velocity of 20 to 50 km/s towards the footpoints of the newly formed coronal loops.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا