ﻻ يوجد ملخص باللغة العربية
The effects of both elliptical shape and stage of emergence of the coronal loop on the resonant absorption of standing kink oscillations are studied. To do so, a typical coronal loop is modeled as a zero-beta longitudinally stratified cylindrical magnetic flux tube. We developed the connection formulae for the resonant absorption of standing transversal oscillations of a coronal loop with an elliptical shape, at various stages of its emergence. Using the connection formulae, the dispersion relation is derived and solved numerically to obtain the frequencies and damping rates of the fundamental and first-overtone kink modes. Our numerical results show that both the elliptical shape and stage of emergence of the loop alter the frequencies and damping rates of the tube as well as the ratio of frequencies of the fundamental and its first-overtone modes. However, the ratio of the oscillation frequency to the damping rate is not affected by the tube shape and stage of its emergence and also is independent of the density stratification parameter.
We investigate the nature of transverse kink oscillations of loops expanding through the solar corona and how can oscillations be used to diagnose the plasma parameters and the magnetic field. In particular, we aim to analyse how the temporal depende
We aim to study the influence of radiative cooling on the standing kink oscillations of a coronal loop. Using the FLASH code, we solved the 3D ideal magnetohydrodynamic equations. Our model consists of a straight, density enhanced and gravitationally
In recent years, coronal loops have been the focus of studies related to the damping of different magnetohydrodynamic (MHD) surface waves and their connection with coronal seismology and wave heating. For a better understanding of wave heating, we ne
Evidence of flare induced, large-amplitude, decay-less transverse oscillations is presented. A system of multi-thermal coronal loops as observed with the Atmospheric Imaging Assembly (AIA), exhibit decay-less transverse oscillations after a flare eru
Coronal loops are building blocks of solar active regions. However, their formation mechanism is still not well understood. Here we present direct observational evidence for the formation of coronal loops through magnetic reconnection as new magnetic