ﻻ يوجد ملخص باللغة العربية
The relatively small fraction of the spin of the proton carried by its quarks presents a major challenge to our understanding of the strong interaction. Traditional efforts to explore this problem have involved new and imaginative experiments and QCD based studies of the nucleon. We propose a new approach to the problem which exploits recent advances in lattice QCD. In particular, we extract values for the spin carried by the quarks in other members of the baryon octet in order to see whether the suppression observed for the proton is a general property or depends significantly on the baryon structure. We compare these results with the values for the spin fractions calculated within a model that includes the effects of confinement, relativity, gluon exchange currents and the meson cloud required by chiral symmetry, finding a very satisfactory level of agreement given the precision currently attainable.
Taking advantage of the high acceptance and axial symmetry of the WASA-at-COSY detector, and the high degree of the polarized proton beam of COSY, the reaction pp{to} pp{eta} has been measured close to threshold to explore the analyzing power Ay. The
A continuum approach to the three valence-quark bound-state problem in quantum field theory, employing parametrisations of the necessary kernel elements, is used to compute the spectrum and Poincare-covariant wave functions for all flavour-$SU(3)$ oc
We calculate the leading-twist helicity-dependent generalized parton distributions (GPDs) of the proton at finite skewness in the Nambu--Jona-Lasinio (NJL) model of quantum chromodynamics (QCD). From these (and previously calculated helicity-independ
Measuring the spin structure of nucleons (protons and neutrons) extensively tests our understanding of how nucleons arise from quarks and gluons, the fundamental building blocks of nuclear matter. The nucleon spin structure is typically probed in sca
We compare the azimuthal correlations arising from three and two hadron production in high energy proton-proton and nucleus-nucleus collisions at sqrt{s_{NN}}=200 GeV, using the leading order matrix elements for two-to-three and two-to-two parton-pro