ﻻ يوجد ملخص باللغة العربية
We study the coupling between backward- and forward-propagating wave modes, with the same group velocity, in a composite right/left-handed nonlinear transmission line. Using an asymptotic multiscale expansion technique, we derive a system of two coupled nonlinear Schr{o}dinger equations governing the evolution of the envelopes of these modes. We show that this system supports a variety of backward- and forward propagating vector solitons, of the bright-bright, bright-dark and dark-bright type. Performing systematic numerical simulations in the framework of the original lattice that models the transmission line, we study the propagation properties of the derived vector soliton solutions. We show that all types of the predicted solitons exist, but differ on their robustness: only bright-bright solitons propagate undistorted for long times, while the other types are less robust, featuring shorter lifetimes. In all cases, our analytical predictions are in a very good agreement with the results of the simulations, at least up to times of the order of the solitons lifetimes.
In the present work, we explore soliton and rogue-like wave solutions in the transmission line analogue of a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltagedependent and symmetric capacitance motivated by the recen
We study the propagation of quasi-discrete microwave solitons in a nonlinear left-handed coplanar waveguide coupled with split ring resonators. By considering the relevant transmission line analogue, we derive a nonlinear lattice model which is studi
We propose a model with the left-handed and right-handed continuous Abelian gauge symmetry; $U(1)_Ltimes U(1)_R$. Then three right-handed neutrinos are naturally required to achieve $U(1)_R$ anomaly cancellations, while several mirror fermions are al
In the present work, we examine a prototypical model for the formation of bright breathers in nonlinear left-handed metamaterial lattices. Utilizing the paradigm of nonlinear transmission lines, we build a relevant lattice and develop a quasi-continu
By studying the rotations of the polarization of light propagating in right and left handed films, with emphasis on the transmission (Faraday effect) and reflec- tions (Kerr effect) of light and through the use of complex values representing the rota