ترغب بنشر مسار تعليمي؟ اضغط هنا

Prediction and Clustering in Signed Networks: A Local to Global Perspective

106   0   0.0 ( 0 )
 نشر من قبل Kai-Yang Chiang
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The study of social networks is a burgeoning research area. However, most existing work deals with networks that simply encode whether relationships exist or not. In contrast, relationships in signed networks can be positive (like, trust) or negative (dislike, distrust). The theory of social balance shows that signed networks tend to conform to some local patterns that, in turn, induce certain global characteristics. In this paper, we exploit both local as well as global aspects of social balance theory for two fundamental problems in the analysis of signed networks: sign prediction and clustering. Motivated by local patterns of social balance, we first propose two families of sign prediction methods: measures of social imbalance (MOIs), and supervised learning using high order cycles (HOCs). These methods predict signs of edges based on triangles and ell-cycles for relatively small values of ell. Interestingly, by examining measures of social imbalance, we show that the classic Katz measure, which is used widely in unsigned link prediction, actually has a balance theoretic interpretation when applied to signed networks. Furthermore, motivated by the global structure of balanced networks, we propose an effective low rank modeling approach for both sign prediction and clustering. For the low rank modeling approach, we provide theoretical performance guarantees via convex relaxations, scale it up to large problem sizes using a matrix factorization based algorithm, and provide extensive experimental validation including comparisons with local approaches. Our experimental results indicate that, by adopting a more global viewpoint of balance structure, we get significant performance and computational gains in prediction and clustering tasks on signed networks. Our work therefore highlights the usefulness of the global aspect of balance theory for the analysis of signed networks.



قيم البحث

اقرأ أيضاً

Node representation learning for signed directed networks has received considerable attention in many real-world applications such as link sign prediction, node classification and node recommendation. The challenge lies in how to adequately encode th e complex topological information of the networks. Recent studies mainly focus on preserving the first-order network topology which indicates the closeness relationships of nodes. However, these methods generally fail to capture the high-order topology which indicates the local structures of nodes and serves as an essential characteristic of the network topology. In addition, for the first-order topology, the additional value of non-existent links is largely ignored. In this paper, we propose to learn more representative node embeddings by simultaneously capturing the first-order and high-order topology in signed directed networks. In particular, we reformulate the representation learning problem on signed directed networks from a variational auto-encoding perspective and further develop a decoupled variational embedding (DVE) method. DVE leverages a specially designed auto-encoder structure to capture both the first-order and high-order topology of signed directed networks, and thus learns more representative node embedding. Extensive experiments are conducted on three widely used real-world datasets. Comprehensive results on both link sign prediction and node recommendation task demonstrate the effectiveness of DVE. Qualitative results and analysis are also given to provide a better understanding of DVE.
Many real networks that are inferred or collected from data are incomplete due to missing edges. Missing edges can be inherent to the dataset (Facebook friend links will never be complete) or the result of sampling (one may only have access to a port ion of the data). The consequence is that downstream analyses that consume the network will often yield less accurate results than if the edges were complete. Community detection algorithms, in particular, often suffer when critical intra-community edges are missing. We propose a novel consensus clustering algorithm to enhance community detection on incomplete networks. Our framework utilizes existing community detection algorithms that process networks imputed by our link prediction based algorithm. The framework then merges their multiple outputs into a final consensus output. On average our method boosts performance of existing algorithms by 7% on artificial data and 17% on ego networks collected from Facebook.
Graph clustering has many important applications in computing, but due to the increasing sizes of graphs, even traditionally fast clustering methods can be computationally expensive for real-world graphs of interest. Scalability problems led to the d evelopment of local graph clustering algorithms that come with a variety of theoretical guarantees. Rather than return a global clustering of the entire graph, local clustering algorithms return a single cluster around a given seed node or set of seed nodes. These algorithms improve scalability because they use time and memory resources that depend only on the size of the cluster returned, instead of the size of the input graph. Indeed, for many of them, their running time grows linearly with the size of the output. In addition to scalability arguments, local graph clustering algorithms have proven to be very useful for identifying and interpreting small-scale and meso-scale structure in large-scale graphs. As opposed to heuristic operational procedures, this class of algorithms comes with strong algorithmic and statistical theory. These include statistical guarantees that prove they have implicit regularization properties. One of the challenges with the existing literature on these approaches is that they are published in a wide variety of areas, including theoretical computer science, statistics, data science, and mathematics. This has made it difficult to relate the various algorithms and ideas together into a cohesive whole. We have recently been working on unifying these diverse perspectives through the lens of optimization as well as providing software to perform these computations in a cohesive fashion. In this note, we provide a brief introduction to local graph clustering, we provide some representative examples of our perspective, and we introduce our software named Local Graph Clustering (LGC).
As a powerful representation paradigm for networked and multi-typed data, the heterogeneous information network (HIN) is ubiquitous. Meanwhile, defining proper relevance measures has always been a fundamental problem and of great pragmatic importance for network mining tasks. Inspired by our probabilistic interpretation of existing path-based relevance measures, we propose to study HIN relevance from a probabilistic perspective. We also identify, from real-world data, and propose to model cross-meta-path synergy, which is a characteristic important for defining path-based HIN relevance and has not been modeled by existing methods. A generative model is established to derive a novel path-based relevance measure, which is data-driven and tailored for each HIN. We develop an inference algorithm to find the maximum a posteriori (MAP) estimate of the model parameters, which entails non-trivial tricks. Experiments on two real-world datasets demonstrate the effectiveness of the proposed model and relevance measure.
Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link pred iction methods have been proposed to solve this problem with various technics. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it can not distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا