ﻻ يوجد ملخص باللغة العربية
The study of social networks is a burgeoning research area. However, most existing work deals with networks that simply encode whether relationships exist or not. In contrast, relationships in signed networks can be positive (like, trust) or negative (dislike, distrust). The theory of social balance shows that signed networks tend to conform to some local patterns that, in turn, induce certain global characteristics. In this paper, we exploit both local as well as global aspects of social balance theory for two fundamental problems in the analysis of signed networks: sign prediction and clustering. Motivated by local patterns of social balance, we first propose two families of sign prediction methods: measures of social imbalance (MOIs), and supervised learning using high order cycles (HOCs). These methods predict signs of edges based on triangles and ell-cycles for relatively small values of ell. Interestingly, by examining measures of social imbalance, we show that the classic Katz measure, which is used widely in unsigned link prediction, actually has a balance theoretic interpretation when applied to signed networks. Furthermore, motivated by the global structure of balanced networks, we propose an effective low rank modeling approach for both sign prediction and clustering. For the low rank modeling approach, we provide theoretical performance guarantees via convex relaxations, scale it up to large problem sizes using a matrix factorization based algorithm, and provide extensive experimental validation including comparisons with local approaches. Our experimental results indicate that, by adopting a more global viewpoint of balance structure, we get significant performance and computational gains in prediction and clustering tasks on signed networks. Our work therefore highlights the usefulness of the global aspect of balance theory for the analysis of signed networks.
Node representation learning for signed directed networks has received considerable attention in many real-world applications such as link sign prediction, node classification and node recommendation. The challenge lies in how to adequately encode th
Many real networks that are inferred or collected from data are incomplete due to missing edges. Missing edges can be inherent to the dataset (Facebook friend links will never be complete) or the result of sampling (one may only have access to a port
Graph clustering has many important applications in computing, but due to the increasing sizes of graphs, even traditionally fast clustering methods can be computationally expensive for real-world graphs of interest. Scalability problems led to the d
As a powerful representation paradigm for networked and multi-typed data, the heterogeneous information network (HIN) is ubiquitous. Meanwhile, defining proper relevance measures has always been a fundamental problem and of great pragmatic importance
Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link pred