ﻻ يوجد ملخص باللغة العربية
Let D be a masa in B(H) where H is a separable Hilbert space. We find real numbers eta_0 < eta_1 < eta_2 < ... < eta_6 so that for every bounded, normal D-bimodule map {Phi} on B(H) either ||Phi|| > eta_6, or ||Phi|| = eta_k for some k <= 6. When D is totally atomic, these maps are the idempotent Schur multipliers and we characterise those with norm eta_k for 0 <= k <= 6. We also show that the Schur idempotents which keep only the diagonal and superdiagonal of an n x n matrix, or of an n x (n+1) matrix, both have norm 2/(n+1) cot(pi/(n+1)), and we consider the average norm of a random idempotent Schur multiplier as a function of dimension. Many of our arguments are framed in the combinatorial language of bipartite graphs.
We introduce partially defined Schur multipliers and obtain necessary and sufficient conditions for the existence of extensions to fully defined positive Schur multipliers, in terms of operator systems canonically associated with their domains. We us
We define the Schur multipliers of a separable von Neumann algebra M with Cartan masa A, generalising the classical Schur multipliers of $B(ell^2)$. We characterise these as the normal A-bimodule maps on M. If M contains a direct summand isomorphic t
We consider the tensor product of the completely depolarising channel on $dtimes d$ matrices with the map of Schur multiplication by a $k times k$ correlation matrix and characterise, via matrix theory methods, when such a map is a mixed (random) uni
Various norms can be defined on a Krein space by choosing different underlying fundamental decompositions. Some estimates of norms on Krein spaces are discussed and few results in Bognars paper are generalized.
In the present paper the unconditional convergence and the invertibility of multipliers is investigated. Multipliers are operators created by (frame-like) analysis, multiplication by a fixed symbol, and resynthesis. Sufficient and/or necessary condit