ﻻ يوجد ملخص باللغة العربية
We give a detailed treatment of the back-reaction effects on the Hawking spectrum in the semiclassical approach to the Hawking radiation. We solve the exact system of non linear equations giving the action of the system, by a rigorously convergent iterative procedure. The first two terms of such an expansion give the O(omega/M) correction to the Hawking spectrum.
We consider a gravity theory coupled to matter, where the matter has a higher-dimensional holographic dual. In such a theory, finding quantum extremal surfaces becomes equivalent to finding the RT/HRT surfaces in the higher-dimensional theory. Using
Hawking radiation of the blackhole is calculated based on the principle of local field theory. In our approach, the radiation is a unitary process, therefore no information loss will be recorded. In fact, observers in different regions of the space c
We consider the island formula for the entropy of subsets of the Hawking radiation in the adiabatic limit where the evaporation is very slow. We find a simple concrete `on-shell formula for the generalized entropy which involves the image of the isla
We show that for the thermal spectrum of Hawking radiation black holes information loss paradox may still be present, even if including the entanglement information stored in the entangled Minkowski vacuum. And to avoid this inconsistency, the spectr
Recently, Banerjee and Kulkarni (R. Banerjee, S. Kulkarni, arXiv:0707.2449 [hep-th]) suggested that it is conceptually clean and economical to use only the covariant anomaly to derive Hawking radiation from a black hole. Based upon this simplified fo