ﻻ يوجد ملخص باللغة العربية
What are the face-probabilities of a cuboidal die, i.e. a die with different side-lengths? This paper introduces a model for these probabilities based on a Gibbs distribution. Experimental data produced in this work and drawn from the literature support the Gibbs model. The experiments also reveal that the physical conditions, such as the quality of the surface onto which the dice are dropped, can affect the face-probabilities. In the Gibbs model, those variations are condensed in a single parameter, adjustable to the physical conditions.
We discuss the asymptotic behaviour of models of lattice polygons, mainly on the square lattice. In particular, we focus on limiting area laws in the uniform perimeter ensemble where, for fixed perimeter, each polygon of a given area occurs with the
We aim this paper to develop the classical lattice models with unbounded spin to the case of non-quadratic polynomial interaction. We demonstrate that the distinct relation between the growths of potentials leads to the uniqueness and the fast decay of correlations for Gibbs measure.
Models of quantum and classical particles on the d-dimensional cubic lattice with pair interparticle interactions are considered. The classical model is obtained from the corresponding quantum one when the reduced physical mass of the particle tends
We continue our study of the full set of translation-invariant splitting Gibbs measures (TISGMs, translation-invariant tree-indexed Markov chains) for the $q$-state Potts model on a Cayley tree. In our previous work cite{KRK} we gave a full descripti
This work introduces and studies a new family of velocity jump Markov processes directly amenable to exact simulation with the following two properties: i) trajectories converge in law when a time-step parameter vanishes towards a given Langevin or H