ﻻ يوجد ملخص باللغة العربية
The Ramsey number r(K_3,Q_n) is the smallest integer N such that every red-blue colouring of the edges of the complete graph K_N contains either a red n-dimensional hypercube, or a blue triangle. Almost thirty years ago, Burr and ErdH{o}s conjectured that r(K_3,Q_n) = 2^{n+1} - 1 for every n in N, but the first non-trivial upper bound was obtained only recently, by Conlon, Fox, Lee and Sudakov, who proved that r(K_3,Q_n) le 7000 cdot 2^n. Here we show that r(K_3,Q_n) = (1 + o(1)) 2^{n+1} as n to infty.
The areas of Ramsey theory and random graphs have been closely linked ever since ErdH{o}s famous proof in 1947 that the diagonal Ramsey numbers $R(k)$ grow exponentially in $k$. In the early 1990s, the triangle-free process was introduced as a model
For a fixed set of positive integers $R$, we say $mathcal{H}$ is an $R$-uniform hypergraph, or $R$-graph, if the cardinality of each edge belongs to $R$. An $R$-graph $mathcal{H}$ is emph{covering} if every vertex pair of $mathcal{H}$ is contained in
The size-Ramsey number of a graph $F$ is the smallest number of edges in a graph $G$ with the Ramsey property for $F$, that is, with the property that any 2-colouring of the edges of $G$ contains a monochromatic copy of $F$. We prove that the size-Ra
The Ramsey number r(K_s,Q_n) is the smallest positive integer N such that every red-blue colouring of the edges of the complete graph K_N on N vertices contains either a red n-dimensional hypercube, or a blue clique on s vertices. Answering a questio
In 1967, ErdH{o}s asked for the greatest chromatic number, $f(n)$, amongst all $n$-vertex, triangle-free graphs. An observation of ErdH{o}s and Hajnal together with Shearers classical upper bound for the off-diagonal Ramsey number $R(3, t)$ shows tha