The relation between chemical abundances and kinematics of the Galactic disc with RAVE


الملخص بالإنكليزية

Aims: We study the relations between stellar kinematics and chemical abundances of a large sample of RAVE giants in search for selection criteria needed for disentangling different Galactic stellar populations. Methods: We select a sample of 2167 giant stars with signal-to-noise per spectral measurements above 75 from the RAVE chemical catalogue and follow the analysis performed by Gratton and colleagues on 150 subdwarf stars spectroscopically observed at high-resolution. We then use a larger sample of 9131 giants (with signal-to-noise above 60) to investigate the chemo-kinematical characteristics of our stars by grouping them into nine subsamples with common eccentricity ($e$) and maximum distance achieved above the Galactic plane ($Z_max$). Results: The RAVE kinematical and chemical data proved to be reliable by reproducing the results by Gratton et al. obtained with high-resolution spectroscopic data. Our analysis, based on the $e$-$Z_max$ plane combined with additional orbital parameters and chemical information, provides an alternative way of identifying different populations of stars. In addition to extracting canonical thick- and thin-disc samples, we find a group of stars in the Galactic plane ($Z_max<1$ kpc and 0.4 $< e < $0.6), which show homogeneous kinematics but differ in their chemical properties. We interpret this as a clear sign that some of these stars have experienced the effects of heating and/or radial migration, which have modified their original orbits. The accretion origin of such stars cannot be excluded.

تحميل البحث