ترغب بنشر مسار تعليمي؟ اضغط هنا

Gamma-ray emitting radio galaxies at hard X-rays: Seyfert core or jet emission?

142   0   0.0 ( 0 )
 نشر من قبل Volker Beckmann
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of radio galaxies has been detected by Fermi/LAT in the gamma-ray domain. In some cases, like Cen A and M 87, these objects have been seen even in the TeV range by Cherenkov telescopes. Whereas the gamma-ray emission is likely to be connected with the non-thermal jet emission, dominating also the radio band, the situation is less clear at hard X-rays. While the smoothly curved continuum emission and the overall spectral energy distribution indicate a non-thermal emission, other features such as the iron line emission and the low variability appear to be rather of Seyfert type, i.e. created in the accretion disk and corona around the central black hole. We investigate several prominent cases using combined X-ray and gamma-ray data in order to constrain the possible contributions of the jet and the accretion disk to the overall spectral energy distribution in radio galaxies. Among the three sources we study, three different origins of the hard X-ray flux can be identified. The emission can be purely non-thermal and caused by the jet, as in the case of M 87, or thermal inverse Compton emission from the Seyfert type core (Cen A), or appears to be a superposition of non-thermal and thermal inverse Compton emission, as we observe in 3C 111. Gamma-ray bright radio galaxies host all kinds of AGN cores, Seyfert 1 and 2, BL Lac objects, and also LINER.



قيم البحث

اقرأ أيضاً

We studied the radio emission from four radio-loud and gamma-ray-loud narrow-line Seyfert 1 galaxies. The goal was to investigate whether a relativistic jet is operating at the source, and quantify its characteristics. We relied on the most systemati c monitoring of such system in the cm and mm radio bands which is conducted with the Effelsberg 100 m and IRAM 30 m telescopes and covers the longest time-baselines and the most radio frequencies to date. We extract variability parameters and compute variability brightness temperatures and Doppler factors. The jet powers were computed from the light curves to estimate the energy output. The dynamics of radio spectral energy distributions were examined to understand the mechanism causing the variability. All the sources display intensive variability that occurs at a pace faster than what is commonly seen in blazars. The flaring events show intensive spectral evolution indicative of shock evolution. The brightness temperatures and Doppler factors are moderate, implying a mildly relativistic jet. The computed jet powers show very energetic flows. The radio polarisation in one case clearly implies a quiescent jet underlying the recursive flaring activity. Despite the generally lower flux densities, the sources appear to show all typical characteristics seen in blazars that are powered by relativistic jets.
The detection of gamma rays from a small number of Narrow Line Seyfert 1 galaxies by the LAT instrument onboard Fermi seriously challenged our understanding of AGN physics. Among the most important findings associated with their discovery has been th e realisation that smaller-mass black holes seem to be hosted by these systems. Immediately after their discovery a radio multi- frequency monitoring campaign was initiated to understand their jet radio emission. Here the first results of the campaign are presented. The light curves and some first variability analyses are discussed, showing that the brightness temperatures and Doppler factors are moderate. The phenomenologies are typically blazar-like. The frequency domain on the other hand indicates intense spectral evolution and the variability patterns indicate mechanisms similar to those acting in the jets of BL Lacs and FSRQs. Finally, the linear polarisation also reveals the presence of a quiescent, optically thin jet in certain cases.
Broadband spectrum of AGN consists of multiple components such as jet emission and accretion disk emission. Temporal correlation study is useful to understand emission components and their physical origins. We have performed optical monitoring using Kanata telescope for 4 radio galaxies and 6 radio-loud Narrow-Line Seyfert 1 (RL-NLSy1): 2 gamma-ray-loud RL-NLSy1s, 1H 0323+342 and PMN J0948+0022, and 4 gamma-ray-quiet RL-NLSy1s. From these results, it is suggested that RL-NLSy1s show a disk-dominant phase and a jet-dominant phase in the optical band, but it is not well correlated with brightness.
148 - F. DAmmando 2013
The discovery of gamma-ray emission from 5 radio-loud narrow-line Seyfert 1 galaxies revealed the presence of a possible emerging third class of AGNs with relativistic jets, in addition to blazars and radio galaxies. The existence of relativistic jet s also in this subclass of Seyfert galaxies opened an unexplored research space for our knowledge of the radio-loud AGNs. Here, we discuss the radio-to-gamma-rays properties of the gamma-ray emitting narrow-line Seyfert 1 galaxies, also in comparison with the blazar scenario.
168 - S. Soldi 2010
We present preliminary results on the variability properties of AGN above 20 keV in order to show the potential of the INTEGRAL IBIS/ISGRI and Swift/BAT instruments for hard X-ray timing analysis of AGN. The 15-50 keV light curves of 36 AGN observed by BAT during 5 years show significantly larger variations when the blazar population is considered (average normalized excess variance = 0.25) with respect to the Seyfert one (average normalized excess variance = 0.09). The hard X-ray luminosity is found to be anti-correlated to the variability amplitude in Seyfert galaxies and correlated to the black hole mass, confirming previous findings obtained with different AGN hard X-ray samples. We also present results on the Seyfert 1 galaxy IC 4329A, as an example of spectral variability study with INTEGRAL/ISGRI data. The position of the high-energy cut-off of this source is found to have varied during the INTEGRAL observations, pointing to a change of temperature of the Comptonising medium. For several bright Seyfert galaxies, a considerable amount of INTEGRAL data have already been accumulated and are publicly available, allowing detailed spectral variability studies at hard X-rays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا