ﻻ يوجد ملخص باللغة العربية
The International Axion Observatory (IAXO) is a next generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10^{-12} GeV^{-1}, i.e. 1-1.5 orders of magnitude beyond sensitivities achieved by the currently most sensitive axion helioscope, the CERN Axion Solar Telescope (CAST). Crucial factors in improving the sensitivity for IAXO are the increase of the magnetic field volume together with the extensive use of x-ray focusing optics and low background detectors, innovations already successfully tested at CAST. Electron-coupled axions invoked to explain the white dwarf cooling, relic axions, and a large variety of more generic axion-like particles (ALPs) along with other novel excitations at the low-energy frontier of elementary particle physics could provide additional physics motivation for IAXO.
The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma phot
We review the physics potential of a next generation search for solar axions: the International Axion Observatory (IAXO). Endowed with a sensitivity to discover axion-like particles (ALPs) with a coupling to photons as small as $g_{agamma}sim 10^{-12
The International Axion Observatory (IAXO) is a new generation axion helioscope aiming at a sensitivity to the axion-photon coupling of a few 10$^{12}$ GeV$^{-1}$, i.e. 1 - 1.5 orders of magnitude beyond the one currently achieved by CAST. The projec
Axions are hypothetical particles that were postulated to solve one of the puzzles arising in the standard model of particle physics, namely the strong CP (Charge conjugation and Parity) problem. The new International AXion Observatory (IAXO) will in
This article describes BabyIAXO, an intermediate experimental stage of the International Axion Observatory (IAXO), proposed to be sited at DESY. IAXO is a large-scale axion helioscope that will look for axions and axion-like particles (ALPs), produce