ترغب بنشر مسار تعليمي؟ اضغط هنا

Abundance study of the two solar-analogue CoRoT targets HD 42618 and HD 43587 from HARPS spectroscopy

121   0   0.0 ( 0 )
 نشر من قبل Thierry Morel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed abundance study based on spectroscopic data obtained with HARPS of two solar-analogue main targets for the asteroseismology programme of the CoRoT satellite: HD 42618 and HD 43587. The atmospheric parameters and chemical composition are accurately determined through a fully differential analysis with respect to the Sun observed with the same instrumental set-up. Several sources of systematic errors largely cancel out with this approach, which allows us to narrow down the 1-sigma error bars to typically 20 K in effective temperature, 0.04 dex in surface gravity, and less than 0.05 dex in the elemental abundances. Although HD 42618 fulfils many requirements for being classified as a solar twin, its slight deficiency in metals and its possibly younger age indicate that, strictly speaking, it does not belong to this class of objects. On the other hand, HD 43587 is slightly more massive and evolved. In addition, marked differences are found in the amount of lithium present in the photospheres of these two stars, which might reveal different mixing properties in their interiors. These results will put tight constraints on the forthcoming theoretical modelling of their solar-like oscillations and contribute to increase our knowledge of the fundamental parameters and internal structure of stars similar to our Sun.



قيم البحث

اقرأ أيضاً

144 - S. Mathur , H. Bruntt , C. Catala 2012
The numerous results obtained with asteroseismology thanks to space missions such as CoRoT and Kepler are providing a new insight on stellar evolution. After five years of observations, CoRoT is going on providing high-quality data. We present here t he analysis of the double star HD169392 complemented by ground-based spectroscopic observations. This work aims at characterizing the fundamental parameters of the two stars, their chemical composition, the acoustic-mode global parameters including their individual frequencies, and their dynamics. We have analysed HARPS observations of the two stars to retrieve their chemical compositions. Several methods have been used and compared to measure the global properties of acoustic modes and their individual frequencies from the photometric data of CoRoT. The new spectroscopic observations and archival astrometric values suggest that HD169392 is a wide binary system weakly bounded. We have obtained the spectroscopic parameters for both components, suggesting the origin from the same cloud. However, only the mode signature of HD169392 A has been measured within the CoRoT data. The signal-to-noise ratio of the modes in HD169392B is too low to allow any confident detection. We were able to extract mode parameters of modes for l=0, 1, 2, and 3. The study of the splittings and inclination angle gives two possible solutions with splittings and inclination angles of 0.4-1.0 muHz and 20-40 degrees for one case and 0.2-0.5 muHz and 55-86 degrees for the other case. The modeling of this star with the Asteroseismic Modeling Portal led to a mass of 1.15+/-0.01 Ms, a radius of 1.88+/-0.02 Rs, and an age of 4.33+/-0.12 Gyr, where the uncertainties are the internal ones.
Solar-like oscillations are stochastically excited by turbulent convection at the surface layers of the stars. We study the role of the surface metal abundance on the efficiency of the stochastic driving in the case of the CoRoT target HD 49933. We c ompute two 3D hydrodynamical simulations representative -- in effective temperature and gravity -- of the surface layers of the CoRoT target HD 49933, a star that is rather metal poor and significantly hotter compared to the Sun. One 3D simulation has a solar metal abundance and the other has a surface iron-to-hydrogen, [Fe/H], abundance ten times smaller. For each 3D simulation we match an associated global 1D model and we compute the associated acoustic modes using a theoretical model of stochastic excitation validated in the case of the Sun and Alpha Cen A. The rate at which energy is supplied per unit time into the acoustic modes associated with the 3D simulation with [Fe/H]=-1 are found about three times smaller than those associated with the 3D simulation with [Fe/H]=0. As shown here, these differences are related to the fact that low metallicity implies surface layers with a higher mean density. In turn, a higher mean density favors smaller convective velocities and hence less efficient driving of the acoustic modes. Our result shows the importance of taking the surface metal abundance into account in the modeling of the mode driving by turbulent convection. A comparison with observational data is presented in a companion paper using seismic data obtained for the CoRoT target HD 49933.
The CoRoT mission is in its third year of observation and the data from the second long run in the galactic centre direction are being analysed. The solar-like oscillating stars that have been observed up to now have given some interesting results, s pecially concerning the amplitudes that are lower than predicted. We present here the results from the analysis of the star HD 170987.The goal of this research work is to characterise the global parameters of HD 170987. We look for global seismic parameters such as the mean large separation, maximum amplitude of the modes, and surface rotation because the signal-to-noise ratio in the observations do not allow us to measure individual modes. We also want to retrieve the stellar parameters of the star and its chemical composition.We have studied the chemical composition of the star using ground-based observations performed with the NARVAL spectrograph. We have used several methods to calculate the global parameters from the acoustic oscillations based on CoRoT data. The light curve of the star has been interpolated using inpainting algorithms to reduce the effect of data gaps. We find power excess related to p modes in the range [400 - 1200]muHz with a mean large separation of 55.2+-0.8muHz with a probability above 95% that increases to 55.9 +-0.2muHz in a higher frequency range [500 - 1250] muHz and a rejection level of 1%. A hint of the variation of this quantity with frequency is also found. The rotation period of the star is estimated to be around 4.3 days with an inclination axis of i=50 deg +20/-13. We measure a bolometric amplitude per radial mode in a range [2.4 - 2.9] ppm around 1000 muHz. Finally, using a grid of models, we estimate the stellar mass, M=1.43+-0.05 Msun, the radius, R=1.96+-0.046 Rsun, and the age ~2.4 Gyr.
CoRoT photometric measurements of asteroseismic targets need complementary ground-based spectroscopic observations. We are using the planet-hunter HARPS spectrograph attached to the 3.6m-ESO telescope in the framework of two consecutive Large Program mes. We discuss its use to study line-profile variations and we report on a specific result obtained for the Delta Sct star HD 170699.
The aim of this work was to use a multi-approach technique to derive the most accurate values possible of the physical parameters of the delta Sct star HD174966. In addition, we searched for a periodic pattern in the frequency spectra with the goal o f using it to determine the mean density of the star. First, we extracted the frequency content from the CoRoT light curve. Then, we derived the physical parameters of HD174966 and carried a mode identification out from the spectroscopic and photometric observations. We used this information to look for the models fulfilling all the conditions and discussed the inaccuracies of the method because of the rotation effects. In a final step, we searched for patterns in the frequency set using a Fourier transform, discussed its origin and studied the possibility of using the periodicity to obtain information about the physical parameters of the star. A total of 185 peaks were obtained from the Fourier analysis of the CoRoT light curve, being almost all reliable pulsating frequencies. From the spectroscopic observations, 18 oscillation modes were detected and identified, and the inclination angle ($62.5^{circ}$$^{+7.5}_{-17.5}$) and the rotational velocity of the star (142 km/s) were estimated. From the multi-colour photometric observations, 3 frequencies were detected, which correspond to the main ones in the CoRoT light curve. We looked for periodicities within the 185 frequencies and found a periodic pattern ~64 mu Hz. Using the inclination angle, the rotational velocity and an Echelle diagram, showing a double comb outside the asymptotic regime, we concluded that the periodicity corresponds to a large separation structure. The periodic pattern allowed us to discriminate models from a grid, finding that the value of the mean density is achieved with a 6% uncertainty. So, the pattern could be used as a new observable for A-F type stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا