ترغب بنشر مسار تعليمي؟ اضغط هنا

A-STAR: The All-Sky Transient Astrophysics Reporter

166   0   0.0 ( 0 )
 نشر من قبل Julian Osborne
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The small mission A-STAR (All-Sky Transient Astrophysics Reporter) aims to locate the X-ray counterparts to ALIGO and other gravitational wave detector sources, to study the poorly-understood low luminosity gamma-ray bursts, and to find a wide variety of transient high-energy source types, A-STAR will survey the entire available sky twice per 24 hours. The payload consists of a coded mask instrument, Owl, operating in the novel low energy band 4-150 keV, and a sensitive wide-field focussing soft X-ray instrument, Lobster, working over 0.15-5 keV. A-STAR will trigger on ~100 GRBs/yr, rapidly distributing their locations.



قيم البحث

اقرأ أيضاً

We present the first southern-hemisphere all-sky imager and radio-transient monitoring system implemented on two prototype stations of the low-frequency component of the Square Kilometre Array. Since its deployment the system has been used for real-t ime monitoring of the recorded commissioning data. Additionally, a transient searching algorithm has been executed on the resulting all-sky images. It uses a difference imaging technique, and has enabled identification of a wide variety of transient classes, ranging from human-made radio-frequency interference to genuine astrophysical events. Observations at the frequency 159.4 MHz and higher in a single coarse channel (0.926 MHz) were made with 2s time resolution, and multiple nights were analysed. Despite having modest sensitivity (~few Jy/beam), using a single coarse channel and 2-s imaging, the system detected bright transients from PSR B0950+08, proving that it can be used to detect bright transients of an astrophysical origin. The unusual, extreme activity of the pulsar PSR B0950+08 (up to ~155 Jy/beam) was initially detected in a blind search in the 2020-04-10/11 data and later assigned to this specific pulsar. The limitations of our data, however, prevent use from making firm conclusions of the effect being due to a combination of refractive and diffractive scintillation or intrinsic emission mechanisms. The system can routinely collect data over many days without interruptions; the large amount of recorded data at 159.4 and 229.7 MHz allowed us to determine a preliminary transient surface density upper limit of $1.32 times 10^{-9} text{deg}^{-2}$ for a timescale and limiting flux density of 2s and 42 Jy, respectively. We plan to extend the observing bandwidth to tens of MHz and improve time resolution to tens of milliseconds in order to increase the sensitivity and enable detections of Fast Radio Bursts below 300 MHz.
The Cherenkov Telescope Array (CTA) will be able to perform unprecedented observations of the transient very high-energy sky. An on-line science alert generation (SAG) pipeline, with a required 30 second latency, will allow the discovery or follow-up of gamma ray bursts (GRBs) and flaring emission from active galactic nuclei, galactic compact objects and electromagnetic counterparts of gravitational waves or neutrino messengers. The CTA sensitivity for very short exposures does not only depend on the technological performance of the array (e.g. effective area, background discrimination efficiency). The algorithms to evaluate the significance of the detection also define the sensitivity, together with their computational efficiency in order to satisfy the SAG latency requirements. We explore the aperture photometry and likelihood analysis techniques, and the associated parameters (e.g. on-source to off-source exposure ratio, minimum number of required signal events), defining the CTA ability to detect a significant signal at short exposures. The resulting CTA differential flux sensitivity as a function of the observing time, obtained using the latest Monte Carlo simulations, is compared to the sensitivities of Fermi-LAT and current-generation IACTs obtained in the overlapping energy ranges.
363 - L. Amati , J. Braga , F. Frontera 2014
We describe the GRB and All-sky Monitor Experiment (GAME) mission submitted by a large international collaboration (Italy, Germany, Czech Repubblic, Slovenia, Brazil) in response to the 2012 ESA call for a small mission opportunity for a launch in 20 17 and presently under further investigation for subsequent opportunities. The general scientific objective is to perform measurements of key importance for GRB science and to provide the wide astrophysical community of an advanced X-ray all-sky monitoring system. The proposed payload was based on silicon drift detectors (~1-50 keV), CdZnTe (CZT) detectors (~15-200 keV) and crystal scintillators in phoswich (NaI/CsI) configuration (~20 keV-20 MeV), three well established technologies, for a total weight of ~250 kg and a required power of ~240 W. Such instrumentation allows a unique, unprecedented and very powerful combination of large field of view (3-4 sr), a broad energy energy band extending from ~1 keV up to ~20 MeV, an energy resolution as good as ~300 eV in the 1-30 keV energy range, a source location accuracy of ~1 arcmin. The mission profile included a launch (e.g., by Vega) into a low Earth orbit, a baseline sky scanning mode plus pointed observations of regions of particular interest, data transmission to ground via X-band (4.8 Gb/orbit, Alcantara and Malindi ground stations), and prompt transmission of GRB / transient triggers.
113 - G. La Mura , P. Assis , A. Blanco 2019
The detection of gravitational waves and neutrinos from astrophysical sources with gamma-ray counterparts officially started the era of Multi-Messenger Astronomy. Their transient and extreme nature implies that monitoring the VHE sky is fundamental t o investigate the non-electromagnetic signals. However, the limited effective area of space-borne instruments prevents observations above a few hundred GeV, while the small field of view and low duty cycle of IACTs make them unsuited for extensive monitoring activities and prompt response to transients. Extensive Air Shower arrays (EAS) can provide a large field of view, a wide effective area and a very high duty cycle. Their main difficulty is the distinction between gamma-ray and cosmic-ray initiated air showers, especially below the TeV range. Here we present some case studies stressing the importance that a new EAS array in the Southern Hemisphere will be able to survey the sky from below 100 GeV up to several TeV. In the energy domain between 100 and 400 GeV we expect the strongest electromagnetic signatures of the acceleration of ultra-relativistic particles in sources like SNRs, blazar jets and gamma-ray bursts, as recently proved by IACT observations. This spectral window is also crucial to understand the Universe opacity to high energy radiation, thus providing constraints on the cosmological parameters. We will discuss the implications of VHE radiation on the mechanisms at work and we will focus on the advantages resulting from the ability to monitor the energy window lying between the domain of space-borne detectors and ground-based facilities.
Modern soft X-ray observatories can yield unique insights into time domain astrophysics, and a huge amount of information is stored - and largely unexploited - in data archives. Like a treasure-hunt, the EXTraS project harvested the hitherto unexplor ed temporal domain information buried in the serendipitous data collected by the European Photon Imaging Camera instrument onboard the XMM- Newton satellite in 20 years of observations. The result is a vast catalogue, describing the temporal behaviour of hundreds of thousands of X-ray sources. But the catalogue is just a starting point because it has to be, in its turn, further analysed. During the project an education activity has been defined and run in several workshops for high school students in Italy, Germany and UK. The final goal is to engage the students, and in perspective citizen scientists, to go through the whole validation process: they look into the data and try to discover new sources, or to characterize already known sources. This paper describes how the EXTraS science gateway is used to accomplish these tasks and highlights the first discovery, a flaring X-ray source in the globular cluster NGC 6540.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا