ﻻ يوجد ملخص باللغة العربية
A complete suppression of the exponential decay in a qubit (interacting with a squeezed vacuum reservoir) can be achieved by frequent measurements of adequately chosen observables. The observables and initial states (Zeno subspace) for which the effect occurs depend on the squeezing parameters of the bath. We show these_quantum Zeno dynamics_ to be substantially different for selective and non-selective measurements. In either case, the approach to the Zeno limit for a finite number of measurements is also studied numerically. The calculation is extended from one to two qubits, where we see both Zeno and anti-Zeno effects depending on the initial state. The reason for the striking differences with the situation in closed systems is discussed.
We study the Quantum Zeno Effect (QZE) induced by continuous partial measurement in the presence of short-correlated noise in the system Hamiltonian. We study the survival probability and the onset of the QZE as a function of the measurement strength
We study the non-Markovian entanglement dynamics of two qubits in a common squeezed bath. We see remarkable difference between the non-Markovian entanglement dynamics with its Markovian counterpart. We show that a non-Markovian decoherence free state
We study dynamics of local quantum uncertainty (LQU) for a system of two cavities and two reservoirs. In the start, the cavities treated as two qubits are quantum correlated with each other, whereas reservoirs are neither correlated with each other n
Repeated measurements of a quantum particle to check its presence in a region of space was proposed long ago [G. R. Allcock, Ann. Phys. {bf 53}, 286 (1969)] as a natural way to determine the distribution of times of arrival at the orthogonal subspace
We experimentally demonstrate a new dynamic fashion of quantum Zeno effect in nuclear magnetic resonance systems. The frequent measurements are implemented through quantum entanglement between the target qubit(s) and the measuring qubit, which dynami