ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Polyakov-loop potential for effective models from functional calculations

206   0   0.0 ( 0 )
 نشر من قبل Rainer Stiele
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the quark backreaction on the Polyakov loop and its impact on the thermodynamics of quantum chromodynamics. The dynamics of the gluons generating the Polyakov-loop potential is altered by the presence of dynamical quarks. However, this backreaction of the quarks has not yet been taken into account in Polyakov-loop extended model studies. In the present work, we show within a 2+1 flavour Polyakov-quark-meson model that a quark-improved Polyakov-loop potential leads to a smoother transition between the low-temperature hadronic phase and the high-temperature quark-gluon plasma phase. In particular, we discuss the dependence of our results on the remaining uncertainties that are the critical temperature and the parametrisation of the Polyakov-loop potential as well as the mass of the sigma-meson.



قيم البحث

اقرأ أيضاً

We analyse the role of the quark backreaction on the gauge-field dynamics and its impact on the Polyakov-loop potential. Based on our analysis we construct an improved Polyakov-loop potential that can be used in future model studies. In the present w ork, we employe this improved potential in a study of a 2+1 flavour Polyakov-quark-meson model and show that the temperature dependence of the order parameters and thermodynamics is closer to full QCD. We discuss the results for QCD thermodynamics and outline briefly the dependence of our results on the critical temperature and the parametrisation of the Polyakov-loop potential as well as the mass of the sigma-meson.
We study genuine finite density effects in QCD-like theories with three-dimensional Polyakov-loop effective theories for heavy quarks. These are derived from the full QCD-like theories by combined strong-coupling and hopping expansions. In particular , we investigate the cold and dense regimes of phase diagrams where we expect to find Bose-Einstein-condensation of diquark baryons or a fermionic first-order liquid-gas transition, depending on the gauge group of the theory. In two-color QCD, for example, we observe evidence of a continuous zero-temperature transition to finite diquark density when the quark chemical potential $mu$ reaches half the diquark mass, i.e. without binding energy. In G$_2$-QCD we observe, in addition to this Silver Blaze onset of diquark density, a second transition in the density towards an exponential increase by roughly $3mu/T$ corresponding to a finite density of G$_2$-nucleons.
We simulate SU(2) gauge theory at temperatures ranging from slightly below $T_c$ to roughly $2T_c$ for two different values of the gauge coupling. Using a histogram method, we extract the effective potential for the Polyakov loop and for the phases o f the eigenvalues of the thermal Wilson loop, in both the fundamental and adjoint representations. We show that the classical potential of the fundamental loop can be parametrized within a simple model which includes a Vandermonde potential and terms linear and quadratic in the Polyakov loop. We discuss how parametrizations for the other cases can be obtained from this model.
The Polyakov loop extended Nambu--Jona-Lasinio (PNJL) model with imaginary chemical potential is studied. The model possesses the extended ${mathbb Z}_{3}$ symmetry that QCD does. Quantities invariant under the extended ${mathbb Z}_{3}$ symmetry, suc h as the partition function, the chiral condensate and the modified Polyakov loop, have the Roberge-Weiss (RW) periodicity. The phase diagram of confinement/deconfinement transition derived with the PNJL model is consistent with the RW prediction on it and the results of lattice QCD. The phase diagram of chiral transition is also presented by the PNJL model.
Unquenching of the Polyakov-loop potential showed to be an important improvement for the description of the phase structure and thermodynamics of strongly-interacting matter at zero quark chemical potentials with Polyakov-loop extended chiral models. This work constitutes the first application of the quark backreaction on the Polyakov-loop potential at nonzero density. The observation is that it links the chiral and deconfinement phase transition also at small temperatures and large quark chemical potentials. The build up of the surface tension in the Polyakov-loop extended Quark-Meson model is explored by investigating the two and 2+1-flavour Quark-Meson model and analysing the impact of the Polyakov-loop extension. In general, the order of magnitude of the surface tension is given by the chiral phase transition. The coupling of the chiral and deconfinement transition with the unquenched Polyakov-loop potential leads to the fact that the Polyakov-loop contributes at all temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا