ﻻ يوجد ملخص باللغة العربية
On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincare generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstones theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann-Oakes-Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model.
We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice result further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of or
We present a model for describing nuclear matter at finite density based on quarks interacting with chiral fields, sigma and pi and with vector mesons introduced as massive gauge fields. The chiral Lagrangian includes a logarithmic potential, associa
Soft-pion theorems are used to show how chiral symmetry constrains the contributions of low-momentum pions to the quark condensate, the pion decay constant and hadron masses, all of which have been proposed as signals of partial restoration of chiral
The isovector--vector and the isovector--axial-vector current are related by a chiral transformation. These currents can be called chiral partners at the fundamental level. In a world where chiral symmetry was not broken, the corresponding current-cu
The spontaneous breaking of chiral symmetry is examined by chiral effective theories, such as the linear sigma model and the Nambu Jona-Lasinio (NJL) model. Indicating that sufficiently large contribution of the UA(1) anomaly can break chiral symmetr