ترغب بنشر مسار تعليمي؟ اضغط هنا

Mean-field analysis of the q-voter model on networks

279   0   0.0 ( 0 )
 نشر من قبل Romualdo Pastor-Satorras
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the exit probability and the consensus time at the transition point. The mean-field formalism is extended to the case that the interaction pattern is given by generic heterogeneous networks. We finally discuss the case of random regular networks and compare analytical results with simulations.



قيم البحث

اقرأ أيضاً

We propose a generalized framework for the study of voter models in complex networks at the the heterogeneous mean-field (HMF) level that (i) yields a unified picture for existing copy/invasion processes and (ii) allows for the introduction of furthe r heterogeneity through degree-selectivity rules. In the context of the HMF approximation, our model is capable of providing straightforward estimates for central quantities such as the exit probability and the consensus/fixation time, based on the statistical properties of the complex network alone. The HMF approach has the advantage of being readily applicable also in those cases in which exact solutions are difficult to work out. Finally, the unified formalism allows one to understand previously proposed voter-like processes as simple limits of the generalized model.
148 - C. Castellano , M.A. Munoz , 2009
We introduce a non-linear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have an unan imous opinion, still a voter can flip its state with probability $epsilon$. We solve the model on a fully connected network (i.e. in mean-field) and compute the exit probability as well as the average time to reach consensus. We analyze the results in the perspective of a recently proposed Langevin equation aimed at describing generic phase transitions in systems with two ($Z_2$ symmetric) absorbing states. We find that in mean-field the q-voter model exhibits a disordered phase for high $epsilon$ and an ordered one for low $epsilon$ with three possible ways to go from one to the other: (i) a unique (generalized voter-like) transition, (ii) a series of two consecutive Ising-like and directed percolation transition, and (iii) a series of two transitions, including an intermediate regime in which the final state depends on initial conditions. This third (so far unexplored) scenario, in which a new type of ordering dynamics emerges, is rationalized and found to be specific of mean-field, i.e. fluctuations are explicitly shown to wash it out in spatially extended systems.
We investigate the long-time properties of a dynamic, out-of-equilibrium, network of individuals holding one of two opinions in a population consisting of two communities of different sizes. Here, while the agents opinions are fixed, they have a pref erred degree which leads them to endlessly create and delete links. Our evolving network is shaped by homophily/heterophily, which is a form of social interaction by which individuals tend to establish links with others having similar/dissimilar opinions. Using Monte Carlo simulations and a detailed mean-field analysis, we study in detail how the sizes of the communities and the degree of homophily/heterophily affects the network structure. In particular, we show that when the network is subject to enough heterophily, an overwhelming transition occurs: individuals of the smaller community are overwhelmed by links from agents of the larger group, and their mean degree greatly exceeds the preferred degree. This and related phenomena are characterized by obtaining the networks total and joint degree distributions, as well as the fraction of links across both communities and that of agents having less edges than the preferred degree. We use our mean-field theory to discuss the networks polarization when the group sizes and level of homophily vary.
Mean-field analysis is an important tool for understanding dynamics on complex networks. However, surprisingly little attention has been paid to the question of whether mean-field predictions are accurate, and this is particularly true for real-world networks with clustering and modular structure. In this paper, we compare mean-field predictions to numerical simulation results for dynamical processes running on 21 real-world networks and demonstrate that the accuracy of the theory depends not only on the mean degree of the networks but also on the mean first-neighbor degree. We show that mean-field theory can give (unexpectedly) accurate results for certain dynamics on disassortative real-world networks even when the mean degree is as low as 4.
The voter model with memory-dependent dynamics is theoretically and numerically studied at the mean-field level. The `internal age, or time an individual spends holding the same state, is added to the set of binary states of the population, such that the probability of changing state (or activation probability $p_i$) depends on this age. A closed set of integro-differential equations describing the time evolution of the fraction of individuals with a given state and age is derived, and from it analytical results are obtained characterizing the behavior of the system close to the absorbing states. In general, different age-dependent activation probabilities have different effects on the dynamics. When the activation probability $p_i$ is an increasing function of the age $i$, the system reaches a steady state with coexistence of opinions. In the case of aging, with $p_i$ being a decreasing function, either the system reaches consensus or it gets trapped in a frozen state, depending on the value of $p_infty$ (zero or not) and the velocity of $p_i$ approaching $p_infty$. Moreover, when the system reaches consensus, the time ordering of the system can be exponential ($p_infty>0$) or power-law like ($p_infty=0$). Exact conditions for having one or another behavior, together with the equations and explicit expressions for the exponents, are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا