ﻻ يوجد ملخص باللغة العربية
Nanowire (NW) crystal growth via the vapour_liquid_solid mechanism is a complex dynamic process involving interactions between many atoms of various thermodynamic states. With increasing speed over the last few decades many works have reported on various aspects of the growth mechanisms, both experimentally and theoretically. We will here propose a general continuum formalism for growth kinetics based on thermodynamic parameters and transition state kinetics. We use the formalism together with key elements of recent research to present a more overall treatment of III_V NW growth, which can serve as a basis to model and understand the dynamical mechanisms in terms of the basic control parameters, temperature and pressures/beam fluxes. Self-catalysed GaAs NW growth on Si substrates by molecular beam epitaxy is used as a model system.
III-V nanowires are useful platforms for studying the electronic and mechanical properties of materials at the nanometer scale. However, the costs associated with commercial nanowire growth reactors are prohibitive for most research groups. We develo
Crystal growth of semiconductor nanowires from a liquid droplet depends on the stability of this droplet at the liquid-solid interface. By combining in-situ transmission electron microscopy with theoretical analysis of the surface energies involved,
Recent developments in photonics include efficient nanoscale optoelectronic components and novel methods for sub-wavelength light manipulation. Here, we explore the potential offered by such devices as a substrate for neuromorphic computing. We propo
We report the capability to simulate in a quantum mechanical tight-binding (TB) atomistic fashion NW devices featuring several hundred to millions of atoms and diameter up to 18 nm. Such simulations go far beyond what is typically affordable with tod
We report on the clear evidence of massless Dirac fermions in two-dimensional system based on III-V semiconductors. Using a gated Hall bar made on a three-layer InAs/GaSb/InAs quantum well, we restore the Landau levels fan chart by magnetotransport a