ﻻ يوجد ملخص باللغة العربية
We describe combinatorial approaches to the question of whether families of real matrices admit pairs of nonreal eigenvalues passing through the imaginary axis. When the matrices arise as Jacobian matrices in the study of dynamical systems, these conditions provide necessary conditions for Hopf bifurcations to occur in parameterised families of such systems. The techniques depend on the spectral properties of additive compound matrices: in particular, we associate with a product of matrices a signed, labelled digraph termed a DSR^[2] graph, which encodes information about the second additive compound of this product. A condition on the cycle structure of this digraph is shown to rule out the possibility of nonreal eigenvalues with positive real part. The techniques developed are applied to systems of interacting elements termed interaction networks, of which networks of chemical reactions are a special case.
We extend previous work on injectivity in chemical reaction networks to general interaction networks. Matrix- and graph-theoretic conditions for injectivity of these systems are presented. A particular signed, directed, labelled, bipartite multigraph
We consider a Hopf algebra of simplicial complexes and provide a cancellation-free formula for its antipode. We then obtain a family of combinatorial Hopf algebras by defining a family of characters on this Hopf algebra. The characters of these combi
Bifurcations in dynamical systems characterize qualitative changes in the system behavior. Therefore, their detection is important because they can signal the transition from normal system operation to imminent failure. While standard persistent homo
A non-commutative, planar, Hopf algebra of rooted trees was proposed in L. Foissy, Bull. Sci. Math. 126 (2002) 193-239. In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a qua
We provide a Hopf algebra structure on the space of superclass functions on the unipotent upper triangular group of type D over a finite field based on a supercharacter theory constructed by Andre and Neto. Also, we make further comments with respect