ترغب بنشر مسار تعليمي؟ اضغط هنا

The radial distribution of water ice and chromophores across Saturns system

134   0   0.0 ( 0 )
 نشر من قبل Gianrico Filacchione
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the last eight years, the Visual and Infrared Mapping Spectrometer (VIMS) aboard the Cassini orbiter has returned hyperspectral images in the 0.35-5.1 micron range of the icy satellites and rings of Saturn. These very different objects show significant variations in surface composition, roughness and regolith grain size as a result of their evolutionary histories, endogenic processes and interactions with exogenic particles. The distributions of surface water ice and chromophores, i.e. organic and non-icy materials, across the saturnian system, are traced using specific spectral indicators (spectral slopes and absorption band depths) obtained from rings mosaics and disk-integrated satellites observations by VIMS.



قيم البحث

اقرأ أيضاً

82 - T. Bryk , A.D.J. Haymet 2016
Ice-water, water-vapor interfaces and ice surface are studied by molecular dynamics simulations with the SPC/E model of water molecules having the purpose to estimate the profiles of electrostatic potential across the interfaces. We have proposed a m ethodology for calculating the profiles of electrostatic potential based on a trial particle, which showed good agreement for the case of electrostatic potential profile of the water-vapor interface of TIP4P model calculated in another way. The measured profile of electrostatic potential for the pure ice-water interface decreases towards the liquid bulk region, which is in agreement with simulations of preferential direction of motion of Li$^{+}$ and F$^{-}$ solute ions at the liquid side of the ice-water interface. These results are discussed in connection with the Workman-Reynolds effect.
There is a long-standing debate regarding the origin of the terrestrial planets water as well as the hydrated C-type asteroids. Here we show that the inner Solar Systems water is a simple byproduct of the giant planets formation. Giant planet cores a ccrete gas slowly until the conditions are met for a rapid phase of runaway growth. As a gas giants mass rapidly increases, the orbits of nearby planetesimals are destabilized and gravitationally scattered in all directions. Under the action of aerodynamic gas drag, a fraction of scattered planetesimals are deposited onto stable orbits interior to Jupiters. This process is effective in populating the outer main belt with C-type asteroids that originated from a broad (5-20 AU-wide) region of the disk. As the disk starts to dissipate, scattered planetesimals reach sufficiently eccentric orbits to cross the terrestrial planet region and deliver water to the growing Earth. This mechanism does not depend strongly on the giant planets orbital migration history and is generic: whenever a giant planet forms it invariably pollutes its inner planetary system with water-rich bodies.
189 - Weijun Zheng , David Jewitt , 2011
The crystalline state of water ice in the Solar System depends on the temperature history of the ice and the influence of energetic particles to which it has been exposed. We measured the infrared absorption spectra of amorphous and crystalline water ice in the 10-50 K and 10-140 K temperature range, respectively, and conducted a systematic experimental study to investigate the amorphization of crystalline water ice via ionizing radiation irradiation at doses of up to 160 pm 30 eV per molecule. We found that crystalline water ice can be converted only partially to amorphous ice by electron irradiation. The experiments showed that a fraction of the 1.65 mum band, which is characteristic for crystalline water ice, survived the irradiation, to a degree that strongly depends on the temperature. Quantitative kinetic fits of the temporal evolution of the 1.65 mum band clearly demonstrate that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. Our experiments show the amorphization at 40K was incomplete, in contradiction to Mastrapa and Browns conclusion (Icarus 2006, 183, 207.). At 50 K, the recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most icy objects in the Solar System, including Jovian satellites, Saturnian satellites (including Titan), and Kuiper Belt Objects, are equal to or above 50 K; this explains why water ice detected on those objects is mostly crystalline.
122 - T. Cavalie , V. Hue , P. Hartogh 2019
Context. The origin of water in the stratospheres of Giant Planets has been an outstanding question ever since its first detection by ISO some 20 years ago. Water can originate from interplanetary dust particles, icy rings and satellites and large co met impacts. Analysis of Herschel Space Observatory observations have proven that the bulk of Jupiters stratospheric water was delivered by the Shoemaker-Levy 9 impacts in 1994. In 2006, the Cassini mission detected water plumes at the South Pole of Enceladus, placing the moon as a serious candidate for Saturns stratospheric water. Further evidence was found in 2011, when Herschel demonstrated the presence of a water torus at the orbital distance of Enceladus, fed by the moons plumes. Finally, water falling from the rings onto Saturns uppermost atmospheric layers at low latitudes was detected during the final orbits of Cassinis end-of-mission plunge into the atmosphere. Aims. In this paper, we use Herschel mapping observations of water in Saturns stratosphere to identify its source. Methods. Several empirical models are tested against the Herschel-HIFI and -PACS observations, which were collected on December 30, 2010, and January 2nd, 2011 (respectively). Results. We demonstrate that Saturns stratospheric water is not uniformly mixed as a function of latitude, but peaking at the equator and decreasing poleward with a Gaussian distribution. We obtain our best fit with an equatorial mole fraction 1.1 ppb and a half-width at half-maximum of 25{deg}, when accounting for a temperature increase in the two warm stratospheric vortices produced by Saturns Great Storm of 2010-2011. Conclusions. This work demonstrates that Enceladus is the main source of Saturns stratospheric water.
162 - B. Gundlach , J. Blum 2014
Water ice is one of the most abundant materials in dense molecular clouds and in the outer reaches of protoplanetary disks. In contrast to other materials (e.g., silicates) water ice is assumed to be stickier due to its higher specific surface energy , leading to faster or more efficient growth in mutual collisions. However, experiments investigating the stickiness of water ice have been scarce, particularly in the astrophysically relevant micrometer-size region and at low temperatures. In this work, we present an experimental setup to grow aggregates composed of $mathrm{mu}$m-sized water-ice particles, which we used to measure the sticking and erosion thresholds of the ice particles at different temperatures between $114 , mathrm{K}$ and $260 , mathrm{K}$. We show with our experiments that for low temperatures (below $sim 210 , mathrm{K}$), $mathrm{mu}$m-sized water-ice particles stick below a threshold velocity of $9.6 , mathrm{m , s^{-1}}$, which is approximately ten times higher than the sticking threshold of $mathrm{mu}$m-sized silica particles. Furthermore, erosion of the grown ice aggregates is observed for velocities above $15.3 , mathrm{m , s^{-1}}$. A comparison of the experimentally derived sticking threshold with model predictions is performed to determine important material properties of water ice, i.e., the specific surface energy and the viscous relaxation time. Our experimental results indicate that the presence of water ice in the outer reaches of protoplanetary disks can enhance the growth of planetesimals by direct sticking of particles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا