ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic structural and topological phase transitions on the Warsaw Stock Exchange: A phenomenological approach

212   0   0.0 ( 0 )
 نشر من قبل Tomasz Gubiec
 تاريخ النشر 2013
  مجال البحث مالية فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the crash dynamics of the Warsaw Stock Exchange (WSE) by using the Minimal Spanning Tree (MST) networks. We find the transition of the complex network during its evolution from a (hierarchical) power law MST network, representing the stable state of WSE before the recent worldwide financial crash, to a superstar-like (or superhub) MST network of the market decorated by a hierarchy of trees (being, perhaps, an unstable, intermediate market state). Subsequently, we observed a transition from this complex tree to the topology of the (hierarchical) power law MST network decorated by several star-like trees or hubs. This structure and topology represent, perhaps, the WSE after the worldwide financial crash, and could be considered to be an aftershock. Our results can serve as an empirical foundation for a future theory of dynamic structural and topological phase transitions on financial markets.



قيم البحث

اقرأ أيضاً

We find numerical and empirical evidence for dynamical, structural and topological phase transitions on the (German) Frankfurt Stock Exchange (FSE) in the temporal vicinity of the worldwide financial crash. Using the Minimal Spanning Tree (MST) techn ique, a particularly useful canonical tool of the graph theory, two transitions of the topology of a complex network representing FSE were found. First transition is from a hierarchical scale-free MST representing the stock market before the recent worldwide financial crash, to a superstar-like MST decorated by a scale-free hierarchy of trees representing the markets state for the period containing the crash. Subsequently, a transition is observed from this transient, (meta)stable state of the crash, to a hierarchical scale-free MST decorated by several star-like trees after the worldwide financial crash. The phase transitions observed are analogous to the ones we obtained earlier for the Warsaw Stock Exchange and more pronounced than those found by Onnela-Chakraborti-Kaski-Kertesz for S&P 500 index in the vicinity of Black Monday (October 19, 1987) and also in the vicinity of January 1, 1998. Our results provide an empirical foundation for the future theory of dynamical, structural and topological phase transitions on financial markets.
One of the major issues studied in finance that has always intrigued, both scholars and practitioners, and to which no unified theory has yet been discovered, is the reason why prices move over time. Since there are several well-known traditional tec hniques in the literature to measure stock market volatility, a central point in this debate that constitutes the actual scope of this paper is to compare this common approach in which we discuss such popular techniques as the standard deviation and an innovative methodology based on Econophysics. In our study, we use the concept of Tsallis entropy to capture the nature of volatility. More precisely, what we want to find out is if Tsallis entropy is able to detect volatility in stock market indexes and to compare its values with the ones obtained from the standard deviation. Also, we shall mention that one of the advantages of this new methodology is its ability to capture nonlinear dynamics. For our purpose, we shall basically focus on the behaviour of stock market indexes and consider the CAC 40, MIB 30, NIKKEI 225, PSI 20, IBEX 35, FTSE 100 and SP 500 for a comparative analysis between the approaches mentioned above.
This paper analyzes correlations in patterns of trading of different members of the London Stock Exchange. The collection of strategies associated with a member institution is defined by the sequence of signs of net volume traded by that institution in hour intervals. Using several methods we show that there are significant and persistent correlations between institutions. In addition, the correlations are structured into correlated and anti-correlated groups. Clustering techniques using the correlations as a distance metric reveal a meaningful clustering structure with two groups of institutions trading in opposite directions.
There are several researches that deal with the behavior of SEs and their relationships with different economical factors. These range from papers dealing with this subject through econometrical procedures to statistical methods known as copula. This article considers the impact of oil and gold price on Tehran Stock Exchange market (TSE). Oil and gold are two factors that are essential for the economy of Iran and their price are determined in the global market. The model used in this study is ARIMA-Copula. We used data from January 1998 to January 2011 as training data to find the appropriate model. The cross validation of model is measured by data from January 2011 to June 2011. We conclude that: (i) there is no significant direct relationship between gold price and the TSE index, but the TSE is indirectly influenced by gold price through other factors such as oil; and (ii) the TSE is not independent of the volatility in oil price and Clayton copula can describe such dependence structure between TSE and the oil price. Based on the property of Clayton copula, which has lower tail dependency, as the oil price drops, stock index falls. This means that decrease in oil price has an adverse effect on Iranian economy.
The principal aim of this work is the evidence on empirical way that catastrophic bifurcation breakdowns or transitions, proceeded by flickering phenomenon, are present on notoriously significant and unpredictable financial markets. Overall, in this work we developed various metrics associated with catastrophic bifurcation transitions, in particular, the catastrophic slowing down (analogous to the critical slowing down). All these things were considered on a well-defined example of financial markets of small and middle to large capitalization. The catastrophic bifurcation transition seems to be connected with the question of whether the early-warning signals are present in financial markets. This question continues to fascinate both the research community and the general public. Interestingly, such early-warning signals have recently been identified and explained to be a consequence of a catastrophic bifurcation transition phenomenon observed in multiple physical systems, e.g. in ecosystems, climate dynamics and in medicine (epileptic seizure and asthma attack). In the present work we provide an analogical, positive identification of such phenomenon by examining its several different indicators in the context of a well-defined daily bubble; this bubble was induced by the recent worldwide financial crisis on typical financial markets of small and middle to large capitalization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا