ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Infrared Spectral Monitoring of Plutos Ices: Spatial Distribution and Secular Evolution

285   0   0.0 ( 0 )
 نشر من قبل Will Grundy
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results from monitoring Plutos 0.8 to 2.4 {mu}m reflectance spectrum with IRTF/SpeX on 65 nights over the dozen years from 2001 to 2012. The spectra show vibrational absorption features of simple molecules CH4, CO, and N2 condensed as ices on Plutos surface. These absorptions are modulated by the planets 6.39 day rotation period, enabling us to constrain the longitudinal distributions of the three ices. Absorptions of CO and N2 are concentrated on Plutos anti-Charon hemisphere, unlike absorptions of less volatile CH4 ice that are offset by roughly 90{deg} from the longitude of maximum CO and N2 absorption. In addition to the diurnal variations, the spectra show longer term trends. On decadal timescales, Plutos stronger CH4 absorption bands have been getting deeper, while the amplitude of their diurnal variation is diminishing, consistent with additional CH4 absorption at high northern latitudes rotating into view as the sub-Earth latitude moves north (as defined by the systems angular momentum vector). Unlike the CH4 absorptions, Plutos CO and N2 absorptions appear to be declining over time, suggesting more equatorial or southerly distributions of those species. Comparisons of geometrically-matched pairs of observations favor geometric explanations for the observed secular changes in CO and N2 absorption, although seasonal volatile transport could be at least partly responsible. The case for a volatile transport contribution to the secular evolution looks strongest for CH4 ice, despite it being the least volatile of the three ices.



قيم البحث

اقرأ أيضاً

IRTF/SpeX observations of Plutos near-infrared reflectance spectrum during 2013 show vibrational absorption features of CO and N$_2$ ices at 1.58 and 2.15 {mu}m, respectively, that are weaker than had been observed during the preceding decade. To rec oncile declining volatile ice absorptions with a lack of decline in Plutos atmospheric pressure, we suggest these ices could be getting harder to see because of increasing scattering by small CH$_4$ crystals, rather than because they are disappearing from the observed hemisphere.
We discuss in a thermodynamic, geologically empirical way the long-term nature of the stable majority ices that could be present in Kuiper Belt Object 2014 MU69 after its 4.6 Gyr residence in the EKB as a cold classical object. Considering the stabil ity versus sublimation into vacuum for the suite of ices commonly found on comets, Centaurs, and KBOs at the average ~40K sunlit surface temperature of MU69 over Myr to Gyr, we find only 3 common ices that are truly refractory: HCN, CH3OH, and H2O (in order of increasing stability). NH3 and H2CO ices are marginally stable and may be removed by any positive temperature excursions in the EKB, as produced every 1e8 - 1e9 yrs by nearby supernovae and passing O/B stars. To date the NH team has reported the presence of abundant CH3OH and evidence for H2O on MU69s surface (Lisse et al. 2017, Grundy et al. 2020). NH3 has been searched for, but not found. We predict that future absorption feature detections will be due to an HCN or poly-H2CO based species. Consideration of the conditions present in the EKB region during the formation era of MU69 lead us to infer that it formed in the dark, in an optically thick mid-plane, unable to see the nascent, variable, highly luminous Young Stellar Object-TTauri Sun, and that KBOs contain HCN and CH3OH ice phases in addition to the H2O ice phases found in their Short Period comet descendants. Finally, when we apply our ice thermal stability analysis to bodies/populations related to MU69, we find that methanol ice may be ubiquitous in the outer solar system; that if Pluto is not a fully differentiated body, then it must have gained its hypervolatile ices from proto-planetary disk sources in the first few Myr of the solar systems existence; and that hypervolatile rich, highly primordial comet C/2016 R2 was placed onto an Oort Cloud orbit on a similar timescale.
We present comprehensive models of Herbig Ae star, HD 142666, which aim to simultaneously explain its spectral energy distribution (SED) and near-infrared (NIR) interferometry. Our new sub-milliarcsecond resolution CHARA (CLASSIC and CLIMB) interfero metric observations, supplemented with archival shorter baseline data from VLTI/PIONIER and the Keck Interferometer, are modeled using centro-symmetric geometric models and an axisymmetric radiative transfer code. CHARAs 330 m baselines enable us to place strong constraints on the viewing geometry, revealing a disk inclined at 58 degrees from face-on with a 160 degree major axis position angle. Disk models imposing vertical hydrostatic equilibrium provide poor fits to the SED. Models accounting for disk scale height inflation, possibly induced by turbulence associated with magneto-rotational instabilities, and invoking grain growth to >1 micron size in the disk rim are required to simultaneously reproduce the SED and measured visibility profile. However, visibility residuals for our best model fits to the SED indicate the presence of unexplained NIR emission, particularly along the apparent disk minor axis, while closure phase residuals indicate a more centro-symmetric emitting region. In addition, our inferred 58 degree disk inclination is inconsistent with a disk-based origin for the UX Ori-type variability exhibited by HD 142666. Additional complexity, unaccounted for in our models, is clearly present in the NIR-emitting region. We propose the disk is likely inclined toward a more edge-on orientation and/or an optically thick outflow component also contributes to the NIR circumstellar flux.
We consider the role of the dwarf planet Ceres on the secular dynamics of the asteroid main belt. Specifically, we examine the post impact evolution of asteroid families due to the interaction of their members with the linear nodal secular resonance with Ceres. First, we find the location of this resonance and identify which asteroid families are crossed by its path. Next, we summarize our results for three asteroid families, namely (1726) Hoffmeister, (1128) Astrid and (1521) Seinajoki which have irregular distributions of their members in the proper elements space, indicative of the effect of the resonance. We confirm this by performing a set of numerical simulations, showcasing that the perturbing action of Ceres through its linear nodal secular resonance is essential to reproduce the actual shape of the families.
Plutos surface is geologically complex because of volatile ices that are mobile on seasonal and longer time scales. Here we analyzed New Horizons LEISA spectral data to globally map the nitrogen ice, including nitrogen with methane diluted in it. Our goal was to learn about the seasonal processes influencing ice redistribution, to calculate the globally averaged energy balance, and to place a lower limit on Plutos N2 inventory. We present the average latitudinal distribution of nitrogen and investigate the relationship between its distribution and topography on Pluto by using maps that include the shifted bands of methane in solid solution with nitrogen to more completely map the distribution of the nitrogen ice. We find that the global average bolometric albedo is 0.83 +- 0.11, similar to that inferred for Triton, and that a significant fraction of Plutos N2 is stored in Sputnik Planitia. Under the assumption that Plutos nitrogen-dominated 11.5 microbar atmosphere is in vapor pressure equilibrium with the nitrogen ice, the ice temperature is 36.93 +/- 0.10 K, as measured by New Horizons. Combined with our global energy balance calculation, this implies that the average bolometric emissivity of Plutos nitrogen ice is probably in the range 0.47 - 0.72. This is consistent with the low emissivities estimated for Triton based on Voyager, and may have implications for Plutos atmospheric seasonal variations, as discussed below. The global pattern of volatile transport at the time of the encounter was from north to south, and the transition between condensation and sublimation within Sputnik Planitia is correlated with changes in the grain size and CH4 concentration derived from the spectral maps. The low emissivity of Plutos N2 ice suggests that Plutos atmosphere may undergo an extended period of constant pressure even as Pluto recedes from the Sun in its orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا