ﻻ يوجد ملخص باللغة العربية
Future NASA X-ray spectroscopy missions will require high throughput, high resolution grating spectrometers. Off-plane reflection gratings are capable of meeting the performance requirements needed to realize the scientific goals of these missions. We have identified a novel grating fabrication method that utilizes common lithographic and microfabrication techniques to produce the high fidelity groove profile necessary to achieve this performance. Application of this process has produced an initial pre-master that exhibits a radial (variable line spacing along the groove dimension), high density (>6000 grooves/mm), laminar profile. This pre-master has been tested for diffraction efficiency at the BESSY II synchrotron light facility and diffracts up to 55% of incident light into usable spectral orders. Furthermore, tests of spectral resolving power show that these gratings are capable of obtaining resolutions well above 1300 ($lambda/Deltalambda$) with limitations due to the test apparatus, not the gratings. Obtaining these results has provided confidence that this fabrication process is capable of producing off-plane reflection gratings for the next generation of X-ray observatories.
Future NASA X-ray Observatories will shed light on a variety of high-energy astrophysical phenomena. Off-plane reflection gratings can be used to provide high throughput and spectral resolution in the 0.3--1.5 keV band, allowing for unprecedented dia
Gamma-ray Bursts (GRB) were discovered by satellite-based detectors as powerful sources of transient $gamma$-ray emission. The Fermi satellite detected an increasing number of these events with its dedicated Gamma-ray Burst Monitor (GBM), some of whi
Effective collecting area, angular resolution, field of view and energy response are fundamental attributes of X-ray telescopes. The performance of state-of-the-art telescopes is currently restricted by Wolter optics, especially for hard X-rays. In t
We are currently developing Cadmium Zinc Telluride (CZT) detectors for a next-generation space-borne hard X-ray telescope which can follow up on the highly successful NuSTAR (Nuclear Spectroscopic Telescope Array) mission. Since the launch of NuSTAR
We describe plans for the development of the Southern Wide-field Gamma-ray Observatory (SWGO), a next-generation instrument with sensitivity to the very-high-energy (VHE) band to be constructed in the Southern Hemisphere. SWGO will provide wide-field