ترغب بنشر مسار تعليمي؟ اضغط هنا

Blackbody excess in persistent Be pulsars

99   0   0.0 ( 0 )
 نشر من قبل Nicola La Palombara
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. La Palombara




اسأل ChatGPT حول البحث

We report on the main results obtained thanks to an observation campaign, performed with XMM-Newton, of four persistent, low-luminosity (Lx ~ 10^34 erg/s) and long-period (P > 200 s) Be accreting pulsars. We found that all sources considered here are characterized by a spectral excess that can be described with a blackbody component of high temperature (kT > 1 keV) and small area (R < 0.5 km). We show that: 1) this feature is a common property of several low-luminosity X-ray binaries; 2) for most sources the blackbody parameters (radius and temperature) are within a narrow range of values; 3) it can be interpreted as emission from the NS polar caps.



قيم البحث

اقرأ أيضاً

289 - N. La Palombara 2013
We report on the main results obtained thanks to an observation campaign with XMM-Newton of four persistent, low-luminosity (Lx ~ 10^34 erg/s) and long-period (P > 200 s) Be accreting pulsars. We found that all sources considered here are characteriz ed by a spectral excess that can be described with a blackbody component of high temperature (kTbb > 1 keV) and small area (Rbb < 0.5 km). We show that: 1) this feature is a common property of several low-luminosity X-ray binaries; 2) for most sources the blackbody parameters (radius and temperature) are within a narrow range of values; 3) it can be interpreted as emission from the NS polar caps.
We quantify the extent to which references to papers in scholarly literature use persistent HTTP URIs that leverage the Digital Object Identifier infrastructure. We find a significant number of references that do not, speculate why authors would use brittle URIs when persistent ones are available, and propose an approach to alleviate the problem.
The Fermi Large Area Telescope has detected an extended region of GeV emission toward the Galactic Center that is currently thought to be powered by dark matter annihilation or a population of young and/or millisecond pulsars. In a test of the pulsar hypothesis, we have carried out an initial search of a 20 deg**2 area centered on the peak of the galactic center GeV excess. Candidate pulsars were identified as a compact, steep spectrum continuum radio source on interferometric images and followed with targeted single-dish pulsation searches. We report the discovery of the recycled pulsar PSR 1751-2737 with a spin period of 2.23 ms. PSR 1751-2737 appears to be an isolated recycled pulsar located within the disk of our Galaxy, and it is not part of the putative bulge population of pulsars that are thought to be responsible for the excess GeV emission. However, our initial success in this small pilot survey suggests that this hybrid method (i.e. wide-field interferometric imaging followed up with single dish pulsation searches) may be an efficient alternative strategy for testing whether a putative bulge population of pulsars is responsible for the GeV excess.
Studies of Fermi data indicate an excess of GeV gamma rays around the Galactic center (GC), possibly due to dark matter. We show that young gamma-ray pulsars can yield a similar signal. First, a high concentration of GC supernovae naturally leads to a population of kicked pulsars symmetric about the GC. Second, while very-young pulsars with soft spectra reside near the Galactic plane, pulsars with spectra that have hardened with age accumulate at larger angles. This combination, including unresolved foreground pulsars, traces the morphology and spectrum of the Excess.
The discovery of source states in the X-ray emission of black-hole binaries and neutron-star low-mass X-ray binaries constituted a major step forward in the understanding of the physics of accretion onto compact objects. While there are numerous stud ies on the correlated timing and spectral variability of these systems, very little work has been done on high-mass X-ray binaries, the third major type of X-ray binaries. The main goal of this work is to investigate whether Be accreting X-ray pulsars display source states and characterise those states through their spectral and timing properties. We have made a systematic study of the power spectra, energy spectra and X-ray hardness-intensity diagrams of nine Be/X-ray pulsars. The evolution of the timing and spectral parameters were monitored through changes over two orders of magnitude in luminosity. We find that Be/X-ray pulsars trace two different branches in the hardness-intensity diagram: the horizontal branch corresponds to a low-intensity state of the source and it is characterised by fast colour and spectral changes and high X-ray variability. The diagonal branch is a high-intensity state that emerges when the X-ray luminosity exceeds a critical limit. The photon index anticorrelates with X-ray flux in the horizontal branch but correlates with it in the diagonal branch. The correlation between QPO frequency and X-ray flux reported in some pulsars is also observed if the peak frequency of the broad-band noise that accounts for the aperiodic variability is used. The two branches may reflect two different accretion modes, depending on whether the luminosity of the source is above or below a critical value. This critical luminosity is mainly determined by the magnetic field strength, hence it differs for different sources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا