ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Saturation of the Nonlinear Refractive Index in Atomic Gases

143   0   0.0 ( 0 )
 نشر من قبل Christian K\\\"ohler
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by the ongoing controversy on the origin of the nonlinear index saturation and subsequent intensity clamping in femtosecond filaments, we study the atomic nonlinear polarization induced by a high-intensity and ultrashort laser pulse in hydrogen by numerically solving the time dependent Schrodinger equation. Special emphasis is given to the efficient modeling of the nonlinear polarization at central laser frequency corresponding to 800 nm wavelength. Here, the recently proposed model of the Higher-Order Kerr Effect (HOKE) and t



قيم البحث

اقرأ أيضاً

Which systems are ideal to obtain negative refraction with no absorption? Electromagnetically induced transparency (EIT) is a method to suppress absorption and make a material transparent to a field of a given frequency. Such a system has been discus sed in [1]; however the main limitations for negative refraction introduced are the necessity of resonant electric and magnetic dipole transitions, and the necessity of very dense media. We suggest using frequency translators in a composite system that would provide negative refraction for a range of optical frequencies while attempting to overcome the limitations discussed above. In the process of using frequency translators, we also find composite systems that can be used for refractive index enhancement.
We study electromagnetically induced transparency (EIT) in a heated potassium vapor cell, using a simple optical setup with a single free-running diode laser and an acousto-optic modulator. Despite the fact that the Doppler width is comparable to the ground state hyperfine splitting, transparency windows with deeply sub-natural line widths and large group indices are obtained. A longitudinal magnetic field is used to split the EIT feature and induce magnetooptical anisotropy. Using the beat note between co-propagating coupling and probe beams, we perform a heterodyne measurement of the circular dichroism (and therefore birefringence) of the EIT medium. The observed spectra reveal that lin-par-lin polarizations lead to greater anisotropy than lin-perp-lin. A simplified analytical model encompassing sixteen Zeeman states and eighteen Lamda subsytems reproduces the experimental observations.
By means of the ultrafast optical Kerr effect method coupled to optical heterodyne detection (OHD-OKE), we characterize the third order nonlinear response of graphene at telecom wavelength, and compare it to experimental values obtained by the Z-scan method on the same samples. From these measurements, we estimate a negative nonlinear refractive index for monolayer graphene, $n_2 = - 1.1times 10^{-13} m^2/W$. This is in contradiction to previously reported values, which leads us to compare our experimental measurements obtained by the OHD-OKE and the Z-scan method with theoretical and experimental values found in the literature, and to discuss the discrepancies, taking into account parameters such as doping.
Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasiti c nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.
The theory of continuous phase transitions predicts the universal collective properties of a physical system near a critical point, which for instance manifest in characteristic power-law behaviours of physical observables. The well-established conce pt at or near equilibrium, universality, can also characterize the physics of systems out of equilibrium. The most fundamental instance of a genuine non-equilibrium phase transition is the directed percolation universality class, where a system switches from an absorbing inactive to a fluctuating active phase. Despite being known for several decades it has been challenging to find experimental systems that manifest this transition. Here we show theoretically that signatures of the directed percolation universality class can be observed in an atomic system with long range interactions. Moreover, we demonstrate that even mesoscopic ensembles --- which are currently studied experimentally --- are sufficient to observe traces of this non-equilibrium phase transition in one, two and three dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا