ﻻ يوجد ملخص باللغة العربية
We investigate the factors that influence the usefulness of supersonic collisions of Bose-Einstein condensates as a potential source of entangled atomic pairs by analyzing the reduction of the number difference fluctuations between regions of opposite momenta. We show that non-monochromaticity of the mother clouds is typically the leading limitation on number squeezing, and that the squeezing becomes less robust to this effect as the density of pairs grows. We develop a simple model that explains the relationship between density correlations and the number squeezing, allows one to estimate the squeezing from properties of the correlation peaks, and shows how the multi-mode nature of the scattering must be taken into account to understand the behavior of the pairing. We analyze the impact of the Bose enhancement on the number squeezing, by introducing a simplified low-gain model. We conclude that as far as squeezing is concerned the preferable configuration occurs when atoms are scattered not uniformly but rather into two well separated regions.
We theoretically analyze atom interferometry based on trapped ultracold atoms, and employ optimal control theory in order to optimize number squeezing and condensate trapping. In our simulations, we consider a setup where the confinement potential is
We develop the number-conserving approach that has previously been used in a single component Bose-Einstein condensed dilute atomic gas, to describe consistent coupled condensate and noncondensate number dynamics, to an $n$-component condensate. The
We studied spin-dependent two-body inelastic collisions in F=2 87Rb Bose-Einstein condensates both experimentally and theoretically. The 87Rb condensates were confined in an optical trap and selectively prepared in various spin states in the F=2 mani
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, the
The problem of understanding how a coherent, macroscopic Bose-Einstein condensate (BEC) emerges from the cooling of a thermal Bose gas has attracted significant theoretical and experimental interest over several decades. The pioneering achievement of