ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictions for $p+$Pb Collisions at sqrt s_NN = 5 TeV

159   0   0.0 ( 0 )
 نشر من قبل Ramona Vogt
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Predictions for charged hadron, identified light hadron, quarkonium, photon, jet and gauge bosons in p+Pb collisions at sqrt s_NN = 5 TeV are compiled and compared. When test run data are available, they are compared to the model predictions.



قيم البحث

اقرأ أيضاً

Predictions made in Albacete {it et al} prior to the LHC $p+$Pb run at $sqrt{s_{NN}} = 5$ TeV are compared to currently available data. Some predictions shown here have been updated by including the same experimental cuts as the data. Some additional predictions are also presented, especially for quarkonia, that were provided to the experiments before the data were made public but were too late for the original publication are also shown here.
We compute predictions for various low-transverse-momentum bulk observables in $sqrt{s_{NN}} = 5.023$ TeV Pb+Pb collisions at the LHC from the event-by-event next-to-leading-order perturbative-QCD + saturation + viscous hydrodynamics (EKRT) model. In particular, we consider the centrality dependence of charged hadron multiplicity, flow coefficients of the azimuth-angle asymmetries and correlations of event-plane angles. The centrality dependencies of the studied observables are predicted to be very similar to those at 2.76 TeV, and the magnitudes of the flow coefficients and event-plane angle correlations are predicted to be close to those at 2.76 TeV. The flow coefficients may, however, offer slightly more discriminating power on the temperature dependence of QCD matter viscosity than the 2.76 TeV measurements. Our prediction for the multiplicity in the 0-5% centrality class, obtained using the two temperature-dependent shear-viscosity-to-entropy ratios that give the best overall fit to RHIC and LHC data is $dN_{rm ch}/detabig|_{|eta|le 0.5} =1876dots2046$. We also predict a power-law increase from 200 GeV Au+Au collisions at RHIC to 2.76 and 5.023 TeV Pb+Pb collisions at the LHC, $dN_{rm ch}/detabig|_{|eta|le 0.5} propto s^{0.164dots0.174}$.
The ALICE data on light flavor hadron production obtained in $p-Pb$ collisions at $sqrt{s_{NN}} $ = 5.02 TeV are studied in the thermal model using the canonical approach with exact strangeness conservation. The chemical freeze-out temperature is ind ependent of centrality except for the lowest multiplicity bin, with values close to 160 MeV but consistent with those obtained in $Pb-Pb$ collisions at $sqrt{s_{NN}}$ = 2.76 TeV. The value of the strangeness non-equilibrium factor $gamma_s$ is slowly increasing with multiplicity from 0.9 to 0.96, i.e. it is always very close to full chemical equilibrium.
Predictions and comparisons of hadronic flow observables for Pb+Pb collisions at 2.76 A TeV and 5.02 A TeV are presented using a hydrodynamics + hadronic cascade hybrid approach. Initial conditions are generated via a new formulation of the IP-Glasma model and then evolved using relativistic viscous hydrodynamics and finally fed into transport cascade in the hadronic phase. The results of this work show excellent agreement with the recent charged hadron anisotropic flow measurements from the ALICE collaboration of Pb+Pb collisions at 5.02 A TeV. Event-by-event distributions of charged hadron v n , flow event-plane correlations, and flow factorization breaking ratios are compared with existing measurements at 2.76 A TeV, and are predicted at 5.02 A TeV. Further predictions of identified hadron observables (for both light and multi-strange hadrons), such as p T -spectra and anisotropic flow coefficients, are presented.
Predictions for cold nuclear matter effects on charged hadrons, identified light hadrons, quarkonium and heavy flavor hadrons, Drell-Yan dileptons, jets, photons, gauge bosons and top quarks produced in $p+$Pb collisions at $sqrt{s_{_{NN}}} = 8.16$ T eV are compiled and, where possible, compared to each other. Predictions of the normalized ratios of $p+$Pb to $p+p$ cross sections are also presented for most of the observables, providing new insights into the expected role of cold nuclear matter effects. In particular, the role of nuclear parton distribution functions on particle production can now be probed over a wider range of phase space than ever before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا