ﻻ يوجد ملخص باللغة العربية
We use photometric and spectroscopic observations of the eclipsing binaries V65, V66 and V69 in the field of the globular cluster M4 to derive masses, radii, and luminosities of their components. The orbital periods of these systems are 2.29, 8.11 and 48.19 d, respectively. The measured masses of the primary and secondary components (Mp and Ms) are 0.8035+-0.0086 and 0.6050+-0.0044 Msun for V65, 0.7842+-0.0045 and 0.7443+-0.0042 Msun for V66, and 0.7665+-0.0053 and 0.7278+-0.0048 Msun for V69. The measured radii (Rp and Rs) are 1.147+_0.010 and 0.6110+-0.0092 Rsun for V66, 0.9347+_0.0048 and 0.8298+-0.0053 Rsun for V66, and 0.8655+-0.0097 and 0.8074+-0.0080 Rsun for V69. The orbits of V65 and V66 are circular, whereas that of V69 has an eccentricity of 0.38. Based on systemic velocities and relative proper motions, we show that all the three systems are members of the cluster. We find that the distance to M4 is 1.82+-0.04 kpc - in good agreement with recent estimates based on entirely different methods. We compare the absolute parameters of V66 and V69 with two sets of theoretical isochrones in mass-radius and mass-luminosity diagrams, and for an assumed [Fe/H] = -1.20, [alpha/Fe] = 0.4, and Y = 0.25 we find the most probable age of M4 to be between 11.2 and 11.3 Gyr. CMD-fitting with the same parameters yields an age close to, or slightly in excess of, 12 Gyr. However, considering the sources of uncertainty involved in CMD fitting, these two methods of age determination are not discrepant. Age and distance determinations can be further improved when infrared eclipse photometry is obtained.
We use photometric and spectroscopic observations of the detached eclipsing binaries V40 and V41 in the globular cluster NGC 6362 to derive masses, radii, and luminosities of the component stars. The orbital periods of these systems are 5.30 and 17.8
We use photometric and spectroscopic observations of the eclipsing binary E32 in the globular cluster 47 Tuc to derive the masses, radii, and luminosities of the component stars. The system has an orbital period of 40.9 d, a markedly eccentric orbit
We use photometric and spectroscopic observations of the eclipsing binary V69-47 Tuc to derive the masses, radii, and luminosities of the component stars. Based on measured systemic velocity, distance, and proper motion, the system is a member of the
We report time-series photometry for 55 variable stars located in the central part of the globular cluster M55. The sample includes 28 newly identified objects of which 13 are eclipsing binaries. Three of these are detached systems located in the tur
The field of the globular cluster M10 (NGC 6254) was monitored between 1998 and 2015 in a search for variable stars. V -light curves were derived for 40 variables or likely variables, most of which are new detections. Proper motions obtained within t