ﻻ يوجد ملخص باللغة العربية
The electronic structure of bulk fcc GaAs, fcc and tetragonal CrAs, and CrAs/GaAs supercells, computed within LMTO local spin-density functional theory, is used to extract the band alignment (band offset) for the [1,0,0] GaAs/CrAs interface in dependence of the spin orientation. With the lateral lattice constant fixed to the experimental bulk GaAs value, a local energy minimum is found for a tetragonal CrAs unit cell with a slightly ($approx$ 2%) reduced longitudinal ([1,0,0]) lattice constant. Due to the identified spin-dependent band alignment, half-metallicity of CrAs no longer is a key requirement for spin-filtering. Encouraged by these findings, we study the spin-dependent tunneling current in [1,0,0] GaAs/CrAs/GaAs heterostructures within the non-equilibrium Greens function approach for an effective tight-binding Hamiltonian derived from the LMTO electronic structure. Results indicate that these heterostructures are probable candidates for efficient room-temperature all-semiconductor spin-filtering devices.
The magneto-photoluminescence in modulation doped core-multishell nanowires is predicted as a function of photo-excitation intensity in non-perturbative transverse magnetic fields. We use a self-consistent field approach within the effective mass app
We investigate half-metallicity in [001] stacked (CrAs)$_n$/(GaAs)$_n$ heterostructures with $n leq 3$ by means of a combined many-body and electronic structure calculation. Interface states in the presence of strong electronic correlations are discu
Rashba spin splitting in two-dimensional (2D) semiconductor systems is generally calculated in a ${bf k} cdot {bf p}$ Luttinger-Kohn approach where the spin splitting due to asymmetry emerges naturally from the bulk band structure. In recent years, s
We investigate the dynamically polarized nuclear-spin system in Fe/emph{n}-GaAs heterostructures using the response of the electron-spin system to nuclear magnetic resonance (NMR) in lateral spin-valve devices. The hyperfine interaction is known to a
We investigate the plasmon dispersion relation and damping rate of collective excitations in a double-layer system consisting of bilayer graphene and GaAs quantum well, separated by a distance, at zero temperature with no interlayer tunneling. We use