ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial and approximative analyses in a spatially random division process

504   0   0.0 ( 0 )
 نشر من قبل Yukio Hayashi
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

For a spatial characteristic, there exist commonly fat-tail frequency distributions of fragment-size and -mass of glass, areas enclosed by city roads, and pore size/volume in random packings. In order to give a new analytical approach for the distributions, we consider a simple model which constructs a fractal-like hierarchical network based on random divisions of rectangles. The stochastic process makes a Markov chain and corresponds to directional random walks with splitting into four particles. We derive a combinatorial analytical form and its continuous approximation for the distribution of rectangle areas, and numerically show a good fitting with the actual distribution in the averaging behavior of the divisions.



قيم البحث

اقرأ أيضاً

We present an analytical method for computing the mean cover time of a random walk process on arbitrary, complex networks. The cover time is defined as the time a random walker requires to visit every node in the network at least once. This quantity is particularly important for random search processes and target localization in network topologies. Based on the global mean first passage time of target nodes we derive an estimate for the cumulative distribution function of the cover time based on first passage time statistics. We show that our result can be applied to various model networks, including ErdH{o}s-Renyi and Barabasi-Albert networks, as well as various real-world networks. Our results reveal an intimate link between first passage and cover time statistics in networks in which structurally induced temporal correlations decay quickly and offer a computationally efficient way for estimating cover times in network related applications.
With a scalar potential and a bivector potential, the vector field associated with the drift of a diffusion is decomposed into a generalized gradient field, a field perpendicular to the gradient, and a divergence-free field. We give such decompositio n a probabilistic interpretation by introducing cycle velocity from a bivectorial formalism of nonequilibrium thermodynamics. New understandings on the mean rates of thermodynamic quantities are presented. Deterministic dynamical system is further proven to admit a generalized gradient form with the emerged potential as the Lyapunov function by the method of random perturbations.
We extend random matrix theory to consider randomly interacting spin systems with spatial locality. We develop several methods by which arbitrary correlators may be systematically evaluated in a limit where the local Hilbert space dimension $N$ is la rge. First, the correlators are given by sums over stacked planar diagrams which are completely determined by the spectra of the individual interactions and a dependency graph encoding the locality in the system. We then introduce heap freeness as a generalization of free independence, leading to a second practical method to evaluate the correlators. Finally, we generalize the cumulant expansion to a sum over dependency partitions, providing the third and most succinct of our methods. Our results provide tools to study dynamics and correlations within extended quantum many-body systems which conserve energy. We further apply the formalism to show that quantum satisfiability at large-$N$ is determined by the evaluation of the independence polynomial on a wide class of graphs.
We study the effect of single biased tracer particle in a bath of other particles performing the random average process (RAP) on an infinite line. We focus on the large time behavior of the mean and the fluctuations of the positions of the particles and also the correlations among them. In the large time t limit these quantities have well-defined scaling forms and grow with time as $sqrt{t}$. A differential equation for the scaling function associated with the correlation function is obtained and solved perturbatively around the solution for a symmetric tracer. Interestingly, when the tracer is totally asymmetric, further progress is enabled by the fact that the particles behind of the tracer do not affect the motion of the particles in front of it, which leads in particular to an exact expression for the variance of the position of the tracer. Finally, the variance and correlations of the gaps between successive particles are also studied. Numerical simulations support our analytical results.
Cascading failures constitute an important vulnerability of interconnected systems. Here we focus on the study of such failures on networks in which the connectivity of nodes is constrained by geographical distance. Specifically, we use random geomet ric graphs as representative examples of such spatial networks, and study the properties of cascading failures on them in the presence of distributed flow. The key finding of this study is that the process of cascading failures is non-self-averaging on spatial networks, and thus, aggregate inferences made from analyzing an ensemble of such networks lead to incorrect conclusions when applied to a single network, no matter how large the network is. We demonstrate that this lack of self-averaging disappears with the introduction of a small fraction of long-range links into the network. We simulate the well studied preemptive node removal strategy for cascade mitigation and show that it is largely ineffective in the case of spatial networks. We introduce an altruistic strategy designed to limit the loss of network nodes in the event of a cascade triggering failure and show that it performs better than the preemptive strategy. Finally, we consider a real-world spatial network viz. a European power transmission network and validate that our findings from the study of random geometric graphs are also borne out by simulations of cascading failures on the empirical network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا