ﻻ يوجد ملخص باللغة العربية
Supergranules are believed to be an evidence for large-scale subsurface convection. The vertical component of the supergranular flow field is very hard to measure, but it is considered only a few m/s in and below the photosphere. Here I present the results of the analysis using three-dimensional inversion for time-distance helioseismology that indicate existence of the large-magnitude vertical upflow in the near sub-surface layers. Possible issues and consequences of this inference are also discussed.
The $rmLambda$CDM cosmological model is remarkable: with just 6 parameters it describes the evolution of the Universe from a very early time when all structures were quantum fluctuations on subatomic scales to the present, and it is consistent with a
Discussion of ``The Dantzig selector: Statistical estimation when $p$ is much larger than $n$ [math/0506081]
For 32 central stars of PNe we present their parameters interpolated among the new evolutionary sequences. The derived stellar final masses are confined between 0.53 and 0.58 $M_odot$ in good agreement with the peak in the white dwarf mass distributi
In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA compu
Galaxies are complex systems the evolution of which apparently results from the interplay of dynamics, star formation, chemical enrichment, and feedback from supernova explosions and supermassive black holes. The hierarchical theory of galaxy formati