ترغب بنشر مسار تعليمي؟ اضغط هنا

Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations

222   0   0.0 ( 0 )
 نشر من قبل Stefan Zohren
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a transfer matrix formalism for the (annealed) Ising model coupled to two-dimensional causal dynamical triangulations. Using the Krein-Rutman theory of positivity preserving operators we study several properties of the emerging transfer matrix. In particular, we determine regions in the quadrant of parameters beta, mu >0 where the infinite-volume free energy converges, yielding results on the convergence and asymptotic properties of the partition function and the Gibbs measure.



قيم البحث

اقرأ أيضاً

193 - Akira Sakai 2020
The lace expansion for the Ising two-point function was successfully derived in Sakai (Commun. Math. Phys., 272 (2007): 283--344). It is an identity that involves an alternating series of the lace-expansion coefficients. In the same paper, we claimed that the expansion coefficients obey certain diagrammatic bounds which imply faster $x$-space decay (as the two-point function cubed) above the critical dimension $d_c$ ($=4$ for finite-variance models), if the spin-spin coupling is ferromagnetic, translation-invariant, summable and symmetric with respect to the underlying lattice symmetries. However, we recently found a flaw in the proof of Lemma 4.2 in Sakai (2007), a key lemma to the aforementioned diagrammatic bounds. In this paper, we no longer use the problematic Lemma 4.2 of Sakai (2007), and prove new diagrammatic bounds on the expansion coefficients that are slightly more complicated than those in Proposition 4.1 of Sakai (2007) but nonetheless obey the same fast decay above the critical dimension $d_c$. Consequently, the lace-expansion results for the Ising and $varphi^4$ models so far are all saved. The proof is based on the random-current representation and its source-switching technique of Griffiths, Hurst and Sherman, combined with a double expansion: a lace expansion for the lace-expansion coefficients.
We present a new dynamical proof of the Thouless-Anderson-Palmer (TAP) equations for the classical Sherrington-Kirkpatrick spin glass at sufficiently high temperature. In our derivation, the TAP equations are a simple consequence of the decay of the two point correlation functions. The methods can also be used to establish the decay of higher order correlation functions. We illustrate this by proving a suitable decay bound on the three point functions from which we derive an analogue of the TAP equations for the two point functions.
262 - Martin Lohmann 2018
We consider the weakly coupled $phi^4 $ theory on $mathbb Z^4 $, in a weak magnetic field $h$, and at the chemical potential $ u_c $ for which the theory is critical if $h=0$. We prove that, as $hto 0$, the magnetization of the model behaves as $(hlo g h^{-1})^{frac 13} $, and so exhibits a logarithmic correction to mean field scaling behavior. This result is well known to physicists, but had never been proven rigorously. Our proof uses the classic construction of the critical theory by Gawedzki and Kupiainen, and a cluster expansion with large blocks.
Explicit formulas for the analytic extensions of the scattering matrix and the time delay of a quasi-one-dimensional discrete Schrodinger operator with a potential of finite support are derived. This includes a careful analysis of the band edge singu larities and allows to prove a Levinson-type theorem. The main algebraic tool are the plane wave transfer matrices.
The 1-arm exponent $rho$ for the ferromagnetic Ising model on $mathbb{Z}^d$ is the critical exponent that describes how fast the critical 1-spin expectation at the center of the ball of radius $r$ surrounded by plus spins decays in powers of $r$. Sup pose that the spin-spin coupling $J$ is translation-invariant, $mathbb{Z}^d$-symmetric and finite-range. Using the random-current representation and assuming the anomalous dimension $eta=0$, we show that the optimal mean-field bound $rhole1$ holds for all dimensions $d>4$. This significantly improves a bound previously obtained by a hyperscaling inequality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا