ﻻ يوجد ملخص باللغة العربية
Integer-forcing (IF) linear receiver has been recently introduced for multiple-input multiple-output (MIMO) fading channels. The receiver has to compute an integer linear combination of the symbols as a part of the decoding process. In particular, the integer coefficients have to be chosen based on the channel realizations, and the choice of such coefficients is known to determine the receiver performance. The original known solution of finding these integers was based on exhaustive search. A practical algorithm based on Hermite-Korkine-Zolotareff (HKZ) and Minkowski lattice reduction algorithms was also proposed recently. In this paper, we propose a low-complexity method based on complex LLL algorithm to obtain the integer coefficients for the IF receiver. For the 2 X 2 MIMO channel, we study the effectiveness of the proposed method in terms of the ergodic rate. We also compare the bit error rate (BER) of our approach with that of other linear receivers, and show that the suggested algorithm outperforms the minimum mean square estimator (MMSE) and zero-forcing (ZF) linear receivers, but trades-off error performance for complexity in comparison with the IF receiver based on exhaustive search or on HKZ and Minkowski lattice reduction algorithms.
A new architecture called integer-forcing (IF) linear receiver has been recently proposed for multiple-input multiple-output (MIMO) fading channels, wherein an appropriate integer linear combination of the received symbols has to be computed as a par
In multiple-input multiple-output (MIMO) fading channels, the design criterion for full-diversity space-time block codes (STBCs) is primarily determined by the decoding method at the receiver. Although constructions of STBCs have predominantly matche
In multiple-input multiple-output (MIMO) fading channels, the design criterion for full-diversity space-time block codes (STBCs) is primarily determined by the decoding method at the receiver. Although constructions of STBCs have predominantly matche
Integer-Forcing (IF) is a new framework, based on compute-and-forward, for decoding multiple integer linear combinations from the output of a Gaussian multiple-input multiple-output channel. This work applies the IF approach to arrive at a new low-co
Integer-forcing (IF) precoding, also known as downlink IF, is a promising new approach for communication over multiple-input multiple-output (MIMO) broadcast channels. Inspired by the integer-forcing linear receiver for multiple-access channels, it g