ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxide Heterostructures for Efficient Solar Cells

199   0   0.0 ( 0 )
 نشر من قبل Elias Assmann
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an unexplored class of absorbing materials for high-efficiency solar cells: heterostructures of transition-metal oxides. In particular, LaVO_3 grown on SrTiO_3 has a direct band gap ~1.1 eV in the optimal range as well as an internal potential gradient, which can greatly help to separate the photo-generated electron-hole pairs. Furthermore, oxide heterostructures afford the flexibility to combine LaVO_3 with other materials such as LaFeO_3 in order to achieve even higher efficiencies with band-gap graded solar cells. We use density-functional theory to demonstrate these features.



قيم البحث

اقرأ أيضاً

Hybrid AMX3 perovskites (A=Cs, CH3NH3; M=Sn, Pb; X=halide) have revolutionized the scenario of emerging photovoltaic technologies. Introduced in 2009 by Kojima et al., a rapid evolution very recently led to 15% efficient solar cells. CH3NH3PbI3 has s o far dominated the field, while the similar CH3NH3SnI3 has not been explored for photovoltaic applications, despite the reduced band-gap. Replacement of Pb by the more environment-friendly Sn would facilitate the large uptake of perovskite-based photovoltaics. Despite the extremely fast progress, the materials electronic properties which are key to the photovoltaic performance are relatively little understood. Here we develop an effective GW method incorporating spin-orbit coupling which allows us to accurately model the electronic, optical and transport properties of CH3NH3SnI3 and CH3NH3PbI3, opening the way to new materials design. The different CH3NH3SnI3 and CH3NH3PbI3 properties are discussed in light of their exploitation for solar cells, and found to be entirely due to relativistic effects.
We demonstrate a novel type of solar cell, one that uses fixed negative charges, formed at the interface of n-Si with Al2O3, to generate strong inversion at the Si surface by electrostatic repulsion. Built-in voltages of up to 755 mV are found at thi s interface. To be able to harness this large built-in voltage, we demonstrate a new photovoltaic device concept, where the photocurrent, generated in this inversion layer, is extracted via an inversion layer induced by a high work function PEDOT:PSS top contact, deposited on top of a passivating and dipole-inducing molecular monolayer. Results of the effect of the molecular monolayer on device performance yield open-circuit voltages of up to 550 mV for moderately doped Si, demonstrating the effectiveness of this contact structure in removing the Fermi level pinning that has hindered past efforts in developing this type of solar cell with n-type Si.
A microscopic model Hamiltonian for the ferroelectric field effect is introduced for the study of oxide heterostructures with ferroelectric components. The long-range Coulomb interaction is incorporated as an electrostatic potential, solved self-cons istently together with the charge distribution. A generic double-exchange system is used as the conducting channel, epitaxially attached to the ferroelectric gate. The observed ferroelectric screening effect, namely the charge accumulation/depletion near the interface, is shown to drive interfacial phase transitions that give rise to robust magnetoelectric responses and bipolar resistive switching, in qualitative agreement with previous density functional theory calculations. The model can be easily adapted to other materials by modifying the Hamiltonian of the conducting channel, and it is useful in simulating ferroelectric field effect devices particularly those involving strongly correlated electronic components where ab-initio techniques are difficult to apply.
While tremendous success has been achieved to date in creating both single phase and composite magnetoelectric materials, the quintessential electric-field control of magnetism remains elusive. In this work, we demonstrate a linear magnetoelectric ef fect which arises from a novel carrier-mediated mechanism, and is a universal feature of the interface between a dielectric and a spin-polarized metal. Using first-principles density functional calculations, we illustrate this effect at the SrRuO$_3$/SrTiO$_3$ interface and describe its origin. To formally quantify the magnetic response of such an interface to an applied electric field, we introduce and define the concept of spin capacitance. In addition to its magnetoelectric and spin capacitive behavior, the interface displays a spatial coexistence of magnetism and dielectric polarization suggesting a route to a new type of interfacial multiferroic.
One of the most fundamental phenomena and a reminder of the electrons relativistic nature is the Rashba spin splitting for broken inversion symmetry. Usually this splitting is a tiny relativistic correction, hardly discernible in experiment. Interfac ing a ferroelectric, BaTiO$_3$, and a heavy 5$d$ metal with a large spin-orbit coupling, Ba(Os,Ir)O$_3$, we show that giant Rashba spin splittings are indeed possible and even fully controllable by an external electric field. Based on density functional theory and a microscopic tight binding understanding, we conclude that the electric field is amplified and stored as a ferroelectric Ti-O distortion which, through the network of oxygen octahedra, also induces a large Os-O distortion. The BaTiO$_3$/BaOsO$_3$ heterostructure is hence the ideal test station for studying the fundamentals of the Rashba effect. It allows intriguing application such as the Datta-Das transistor to operate at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا